A Comparison of ARIMA and LSTM in Forecasting Time Series

自回归积分移动平均 指数平滑 单变量 时间序列 计算机科学 人工智能 移动平均线 机器学习 系列(地层学) 深度学习 自回归模型 计量经济学 算法 数学 多元统计 生物 计算机视觉 古生物学
作者
Sima Siami‐Namini,Neda Tavakoli,Akbar Siami Namin
标识
DOI:10.1109/icmla.2018.00227
摘要

Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In particular, ARIMA model has demonstrated its outperformance in precision and accuracy of predicting the next lags of time series. With the recent advancement in computational power of computers and more importantly development of more advanced machine learning algorithms and approaches such as deep learning, new algorithms are developed to analyze and forecast time series data. The research question investigated in this article is that whether and how the newly developed deep learning-based algorithms for forecasting time series data, such as "Long Short-Term Memory (LSTM)", are superior to the traditional algorithms. The empirical studies conducted and reported in this article show that deep learning-based algorithms such as LSTM outperform traditional-based algorithms such as ARIMA model. More specifically, the average reduction in error rates obtained by LSTM was between 84 - 87 percent when compared to ARIMA indicating the superiority of LSTM to ARIMA. Furthermore, it was noticed that the number of training times, known as "epoch" in deep learning, had no effect on the performance of the trained forecast model and it exhibited a truly random behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Jimmy采纳,获得10
刚刚
刚刚
刚刚
芋圆Z.发布了新的文献求助10
1秒前
1秒前
东皇太憨完成签到,获得积分10
1秒前
1秒前
2秒前
润润轩轩发布了新的文献求助10
2秒前
2秒前
orixero应助韭黄采纳,获得10
3秒前
gnufgg完成签到,获得积分10
3秒前
科研通AI5应助tabor采纳,获得10
3秒前
3秒前
互助互惠互通完成签到,获得积分10
3秒前
脑洞疼应助ziyiziyi采纳,获得10
4秒前
4秒前
4秒前
屹舟完成签到,获得积分10
5秒前
zjudxn关注了科研通微信公众号
5秒前
6秒前
6秒前
科研通AI5应助hu970采纳,获得10
6秒前
6秒前
艺玲发布了新的文献求助10
7秒前
咚咚咚完成签到,获得积分10
7秒前
芋圆Z.完成签到,获得积分10
7秒前
atad2发布了新的文献求助10
7秒前
li梨完成签到,获得积分10
7秒前
8秒前
晏小敏完成签到,获得积分10
8秒前
爆米花应助风中寄云采纳,获得10
9秒前
屹舟发布了新的文献求助10
9秒前
Dou完成签到,获得积分10
9秒前
白泯完成签到,获得积分10
10秒前
1ssd发布了新的文献求助10
10秒前
667发布了新的文献求助10
10秒前
小二郎应助辰柒采纳,获得10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759