A Comparison of ARIMA and LSTM in Forecasting Time Series

自回归积分移动平均 指数平滑 单变量 时间序列 计算机科学 人工智能 移动平均线 机器学习 系列(地层学) 深度学习 自回归模型 计量经济学 算法 数学 多元统计 生物 计算机视觉 古生物学
作者
Sima Siami‐Namini,Neda Tavakoli,Akbar Siami Namin
标识
DOI:10.1109/icmla.2018.00227
摘要

Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In particular, ARIMA model has demonstrated its outperformance in precision and accuracy of predicting the next lags of time series. With the recent advancement in computational power of computers and more importantly development of more advanced machine learning algorithms and approaches such as deep learning, new algorithms are developed to analyze and forecast time series data. The research question investigated in this article is that whether and how the newly developed deep learning-based algorithms for forecasting time series data, such as "Long Short-Term Memory (LSTM)", are superior to the traditional algorithms. The empirical studies conducted and reported in this article show that deep learning-based algorithms such as LSTM outperform traditional-based algorithms such as ARIMA model. More specifically, the average reduction in error rates obtained by LSTM was between 84 - 87 percent when compared to ARIMA indicating the superiority of LSTM to ARIMA. Furthermore, it was noticed that the number of training times, known as "epoch" in deep learning, had no effect on the performance of the trained forecast model and it exhibited a truly random behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fawr完成签到 ,获得积分10
3秒前
Terry完成签到,获得积分10
4秒前
5秒前
甜的瓜完成签到,获得积分20
5秒前
6秒前
重要的笑蓝完成签到,获得积分10
9秒前
energyharvester完成签到 ,获得积分10
10秒前
10秒前
11秒前
czzc发布了新的文献求助10
14秒前
14秒前
oceanao应助lww123采纳,获得10
17秒前
czzc完成签到,获得积分10
18秒前
18秒前
小豆豆严发布了新的文献求助10
20秒前
勤恳的沉鱼完成签到,获得积分10
26秒前
万一完成签到,获得积分10
27秒前
小豆豆严完成签到,获得积分10
31秒前
31秒前
future完成签到 ,获得积分10
33秒前
38秒前
雨道完成签到,获得积分10
38秒前
40秒前
40秒前
万一发布了新的文献求助10
41秒前
41秒前
xiaohuangya完成签到 ,获得积分10
42秒前
温柔的鸵鸟完成签到 ,获得积分10
44秒前
彭小彭发布了新的文献求助10
44秒前
Avery完成签到 ,获得积分10
45秒前
channing发布了新的文献求助10
46秒前
深海鱼完成签到,获得积分10
47秒前
Monkwy完成签到,获得积分10
47秒前
Raymond D完成签到,获得积分10
47秒前
小朱完成签到,获得积分10
51秒前
隐形的映菱完成签到,获得积分10
53秒前
54秒前
烂漫的汲完成签到,获得积分10
59秒前
浊人发布了新的文献求助10
1分钟前
sfxnxgu发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012