Pipeline leakage identification and localization based on the fiber Bragg grating hoop strain measurements and particle swarm optimization and support vector machine

支持向量机 粒子群优化 泄漏(经济) 工程类 稳健性(进化) 人工智能 模式识别(心理学) 算法 计算机科学 生物化学 化学 基因 经济 宏观经济学
作者
Ziguang Jia,Liang Ren,Hong‐Nan Li,Tao Jiang,Wenlin Wu
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:26 (2): e2290-e2290 被引量:33
标识
DOI:10.1002/stc.2290
摘要

A pipeline's safe usage is of critical concern. In our previous work, a fiber Bragg grating hoop strain sensor was developed to measure the hoop strain variation in a pressurized pipeline. In this paper, a support vector machine (SVM) learning method is applied to identify pipeline leakage accidents from different hoop strain signals and then further locate the leakage points along a pipeline. For leakage identification, time domain features and wavelet packet vectors are extracted as the input features for the SVM model. For leakage localization, a series of terminal hoop strain variations are extracted as the input variables for a support vector regression (SVR) analysis to locate the leakage point. The parameters of the SVM/SVR kernel function are optimized by means of a particle swarm optimization (PSO) algorithm to obtain the highest identification and localization accuracy. The results show that when the RBF kernel with optimized C and γ values is applied, the classification accuracy for leakage identification reaches 97.5% (117/120). The mean square error value for leakage localization can reach as low as 0.002 when the appropriate parameter combination is chosen for a noise-free situation. The anti-noise capability of the optimized SVR model for leakage localization is evaluated by superimposing Gaussian white noise at different levels. The simulation study shows that the average localization error is still acceptable (≈500 m) with 5% noise. The results demonstrate the feasibility and robustness of the PSO–SVM approach for pipeline leakage identification and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stanfuny发布了新的文献求助10
1秒前
一二完成签到,获得积分10
2秒前
天天快乐应助小闫采纳,获得10
2秒前
2秒前
齐天完成签到 ,获得积分10
4秒前
5秒前
淡然冬灵发布了新的文献求助30
5秒前
CipherSage应助大方的心情采纳,获得10
6秒前
及禾完成签到,获得积分10
7秒前
赘婿应助ninomi采纳,获得10
8秒前
MingqingFang发布了新的文献求助10
8秒前
心想柿橙完成签到,获得积分10
11秒前
l37u2n发布了新的文献求助10
12秒前
Stanfuny完成签到,获得积分10
12秒前
Akim应助Mcling采纳,获得10
13秒前
跳跃的飞机完成签到,获得积分10
14秒前
ZQ完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
乐乐应助Sou采纳,获得10
17秒前
ninomi完成签到,获得积分20
17秒前
田様应助科研通管家采纳,获得10
17秒前
cureall应助科研通管家采纳,获得10
17秒前
wu8577应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
Gauss应助Merlin采纳,获得200
20秒前
无花果应助秦摆烂采纳,获得30
21秒前
南海神尼完成签到,获得积分10
23秒前
bkagyin应助MingqingFang采纳,获得10
24秒前
个性铅笔关注了科研通微信公众号
24秒前
梨儿发布了新的文献求助10
24秒前
24秒前
27秒前
27秒前
好好好完成签到 ,获得积分10
27秒前
HeAuBook应助分析采纳,获得20
28秒前
zmj发布了新的文献求助10
30秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11135009
捐赠科研通 3239663
什么是DOI,文献DOI怎么找? 1790326
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150