支持向量机
粒子群优化
泄漏(经济)
工程类
稳健性(进化)
人工智能
模式识别(心理学)
算法
计算机科学
生物化学
基因
宏观经济学
经济
化学
作者
Ziguang Jia,Liang Ren,Hong‐Nan Li,Tao Jiang,Wenlin Wu
摘要
A pipeline's safe usage is of critical concern. In our previous work, a fiber Bragg grating hoop strain sensor was developed to measure the hoop strain variation in a pressurized pipeline. In this paper, a support vector machine (SVM) learning method is applied to identify pipeline leakage accidents from different hoop strain signals and then further locate the leakage points along a pipeline. For leakage identification, time domain features and wavelet packet vectors are extracted as the input features for the SVM model. For leakage localization, a series of terminal hoop strain variations are extracted as the input variables for a support vector regression (SVR) analysis to locate the leakage point. The parameters of the SVM/SVR kernel function are optimized by means of a particle swarm optimization (PSO) algorithm to obtain the highest identification and localization accuracy. The results show that when the RBF kernel with optimized C and γ values is applied, the classification accuracy for leakage identification reaches 97.5% (117/120). The mean square error value for leakage localization can reach as low as 0.002 when the appropriate parameter combination is chosen for a noise-free situation. The anti-noise capability of the optimized SVR model for leakage localization is evaluated by superimposing Gaussian white noise at different levels. The simulation study shows that the average localization error is still acceptable (≈500 m) with 5% noise. The results demonstrate the feasibility and robustness of the PSO–SVM approach for pipeline leakage identification and localization.
科研通智能强力驱动
Strongly Powered by AbleSci AI