Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram

射血分数 无症状的 医学 心脏病学 置信区间 人口 心电图 危险系数 内科学 心力衰竭 环境卫生
作者
Zachi I. Attia,Suraj Kapa,Francisco López-Jiménez,Paul M. McKie,Dorothy J. Ladewig,Gaurav Satam,Patricia A. Pellikka,Maurice Enriquez‐Sarano,Peter A. Noseworthy,Thomas M. Munger,Samuel J. Asirvatham,Christopher G. Scott,Rickey E. Carter,Paul A. Friedman
出处
期刊:Nature Medicine [Springer Nature]
卷期号:25 (1): 70-74 被引量:909
标识
DOI:10.1038/s41591-018-0240-2
摘要

Asymptomatic left ventricular dysfunction (ALVD) is present in 3-6% of the general population, is associated with reduced quality of life and longevity, and is treatable when found1-4. An inexpensive, noninvasive screening tool for ALVD in the doctor's office is not available. We tested the hypothesis that application of artificial intelligence (AI) to the electrocardiogram (ECG), a routine method of measuring the heart's electrical activity, could identify ALVD. Using paired 12-lead ECG and echocardiogram data, including the left ventricular ejection fraction (a measure of contractile function), from 44,959 patients at the Mayo Clinic, we trained a convolutional neural network to identify patients with ventricular dysfunction, defined as ejection fraction ≤35%, using the ECG data alone. When tested on an independent set of 52,870 patients, the network model yielded values for the area under the curve, sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%, and 85.7%, respectively. In patients without ventricular dysfunction, those with a positive AI screen were at 4 times the risk (hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing future ventricular dysfunction compared with those with a negative screen. Application of AI to the ECG-a ubiquitous, low-cost test-permits the ECG to serve as a powerful screening tool in asymptomatic individuals to identify ALVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜之卉完成签到,获得积分10
刚刚
无花果应助Island采纳,获得10
刚刚
刚刚
SHDeathlock发布了新的文献求助200
1秒前
Owen应助醒醒采纳,获得10
1秒前
无心的代桃完成签到,获得积分10
2秒前
追寻代真完成签到,获得积分10
2秒前
晓兴兴完成签到,获得积分10
2秒前
leon发布了新的文献求助10
3秒前
洽洽瓜子shine完成签到,获得积分10
3秒前
简单的大白菜真实的钥匙完成签到,获得积分10
4秒前
5秒前
一独白完成签到,获得积分10
6秒前
在水一方应助坚强的樱采纳,获得10
6秒前
慕青应助尼亚吉拉采纳,获得10
7秒前
快乐小白菜应助甜酱采纳,获得10
7秒前
7秒前
qq应助毛慢慢采纳,获得10
8秒前
8秒前
科研通AI5应助吴岳采纳,获得10
8秒前
天天快乐应助ufuon采纳,获得10
9秒前
科研通AI5应助一独白采纳,获得10
10秒前
hearts_j完成签到,获得积分10
10秒前
FashionBoy应助yasan采纳,获得10
10秒前
安琪琪完成签到,获得积分10
11秒前
11秒前
端庄千琴完成签到,获得积分10
11秒前
gaogao完成签到,获得积分10
11秒前
菲菲公主完成签到,获得积分10
12秒前
12秒前
12秒前
英姑应助柒八染采纳,获得10
13秒前
退堂鼓发布了新的文献求助10
13秒前
党弛完成签到,获得积分10
13秒前
13秒前
14秒前
烂漫的松完成签到,获得积分10
14秒前
cheryl完成签到,获得积分10
14秒前
笑笑发布了新的文献求助10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762