Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area

计算机科学 弹道 轨迹优化 环岛 运输工程 工程类 物理 天文
作者
Xiangwang Hu,Jian Sun
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:101: 111-125 被引量:156
标识
DOI:10.1016/j.trc.2019.02.016
摘要

Abstract Merging areas on freeways are primary locations for bottlenecks due to vehicles’ mandatory lateral conflicts. These critical conflicts, however, are potentially avoidable with Connected and Autonomous Vehicle (CAV) technology. However, current literature using CAV technology mostly focuses on merging maneuvers between a single-lane mainline and an incoming ramp. An algorithm dealing with multilane merging areas is absent. In this paper, an online system control algorithm for multilane freeway merging areas is presented with a CAV environment based on optimizing vehicles’ lane changing and car following trajectories. First, the lane flow distribution is adjusted upstream of the merging point under a rule-based lane changing decision, which eventually balances downstream lane flow distribution. A Cooperative Lane Changing Control (CLCC) optimization model is proposed to ensure safe and smooth lane changing execution. Second, a Cooperative Merging Control (CMC) model is adopted, analyzed, and generalized to conduct merging maneuvers around the merging point. Third, a dynamic moving border point method is designed to coordinate the consecutive execution of the CLCC and CMC models. To validate the proposed algorithm, a simulation platform based on VISSIM is developed for online computation and visualization. A typical two-lane freeway merging area is studied. Results under various demand scenarios demonstrate that the proposed algorithm outperforms previous cooperative merging algorithms consistently with respect to delays and average travel speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助轻松的访彤采纳,获得10
刚刚
刚刚
大海完成签到,获得积分20
1秒前
春眠不觉小小酥完成签到,获得积分10
2秒前
2秒前
11111发布了新的文献求助10
4秒前
pragmatic发布了新的文献求助10
4秒前
6秒前
大海发布了新的文献求助30
6秒前
元始天尊完成签到,获得积分10
7秒前
窦匪完成签到,获得积分10
8秒前
努力努力123完成签到,获得积分10
9秒前
lujianqi发布了新的文献求助10
9秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
10秒前
11秒前
mount完成签到,获得积分10
11秒前
casey完成签到,获得积分10
11秒前
loey完成签到,获得积分10
15秒前
深情安青应助诸葛雪兰采纳,获得10
16秒前
ZBY关闭了ZBY文献求助
16秒前
nini完成签到,获得积分10
18秒前
幸福的寄松完成签到,获得积分10
19秒前
张帅完成签到,获得积分10
19秒前
20秒前
22秒前
万能图书馆应助wsdsd采纳,获得10
23秒前
11111发布了新的文献求助10
23秒前
24秒前
24秒前
清秀大方嘤嘤猴完成签到,获得积分10
24秒前
25秒前
25秒前
小马甲应助yhy采纳,获得10
25秒前
26秒前
一笑倾城发布了新的文献求助10
28秒前
Jasper应助科研通管家采纳,获得10
29秒前
fillippo99应助科研通管家采纳,获得20
29秒前
29秒前
华仔应助科研通管家采纳,获得10
29秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464359
求助须知:如何正确求助?哪些是违规求助? 3057701
关于积分的说明 9058044
捐赠科研通 2747703
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696148