计算机科学
深度学习
反问题
分割
人工智能
相位展开
图像分割
相(物质)
计算机视觉
遥感
地质学
数学
光学
干涉测量
物理
有机化学
数学分析
化学
作者
Gili Dardikman,Nir A. Turko,Natan T. Shaked
标识
DOI:10.1109/icsee.2018.8646266
摘要
We explore different deep learning-based approaches to solve the problem of phase unwrapping in objects with high spatial gradients, which is applicable to many fields in medicine, biology and remote sensing. We simulate data with high spatial gradients to compare the quality of the solution and the runtime obtained when addressing this problem either as an inverse problem or as a semantic segmentation problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI