Estimation of Biomass and Leaf Area Index in the Western Ghats Forest Ecosystem by the Integrated Analysis of Hyperspectral Data and Space Borne LiDAR Data

高光谱成像 遥感 多光谱图像 激光雷达 环境科学 天蓬 叶面积指数 生物量(生态学) 归一化差异植被指数 树冠 像素 地理 计算机科学 地质学 生态学 人工智能 海洋学 生物 考古
作者
Indu Indirabai,M.V. Harindranathan Nair,R. Jaishanker,‪Rama Rao Nidamanuri
出处
期刊:Journal of Geography, Environment and Earth Science International [Sciencedomain International]
卷期号:: 1-12 被引量:1
标识
DOI:10.9734/jgeesi/2019/v19i430090
摘要

The Western Ghats regions of India are characterised by highly complex and biodiverse forest ecosystem with heterogeneous tree species. The integration of LiDAR data with multispectral remote sensing has limitations in the case of spectral information abundance. The objective of this study was to undertake biophysical characterisation in the Western Ghats regions of India by the integration of GLAS ICESat data and AVIRIS-NG hyperspectral data. The methodology of the study includes pre-processing of the hyperspectral and ICESat GLAS data followed by the integration of the two data sets based on pixel based fusion strategy in order to estimate the biophysical parameters of forests. Biomass was estimated by Support Vector Regression method. The structural characteristics extracted from the LiDAR data are integrated with spectral characteristics from the AVIRIS NG imagery based on the pixel level so that biophysical characteristics including canopy height, biomass, Leaf Area Index are estimated. The integrated product on further analysis revealed the applicability of this approach to extract more spectral information and forest parameters. The key findings of the study include biophysical parameters both structural as well as abundant spectral information can be retrieved successfully by the methodology used which have strong correlation with the in situ measurements. The study concluded that biophysical parameters including Leaf Area Index, biomass and canopy height can be effectively estimated by the integration of AVIRIS-NG imagery and GLAS data, which cannot be possible when used independently. It is recommended to have continuous retrieval of LiDAR foot prints instead of discrete, to make modelling of the biophysical parameters a little more effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sen123发布了新的文献求助10
1秒前
hu123发布了新的文献求助10
3秒前
咕_完成签到 ,获得积分10
3秒前
星辰大海应助dddyrrrrr采纳,获得10
3秒前
水清木华完成签到,获得积分10
6秒前
8秒前
小黑猴ps发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助100
9秒前
xr完成签到 ,获得积分10
9秒前
10秒前
ruogu7完成签到,获得积分10
13秒前
岁月旧曾谙完成签到,获得积分10
14秒前
今后应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
16秒前
高调的摆酒人完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
研友_ngqgY8完成签到,获得积分10
17秒前
样idol完成签到 ,获得积分10
18秒前
科研通AI6应助Anerspaner采纳,获得20
19秒前
19秒前
清新的易真完成签到,获得积分10
21秒前
1459完成签到,获得积分10
24秒前
机灵的以筠完成签到 ,获得积分10
25秒前
bkagyin应助愤怒的绿蓉采纳,获得10
27秒前
28秒前
fan051500完成签到,获得积分10
31秒前
顽固分子完成签到 ,获得积分10
31秒前
罗先斗完成签到,获得积分10
32秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
可乐完成签到,获得积分10
33秒前
how完成签到 ,获得积分10
34秒前
皮汤汤完成签到 ,获得积分10
34秒前
田様应助C胖胖采纳,获得10
36秒前
戴翠琼完成签到,获得积分10
37秒前
38秒前
萌萌哒瓢酱完成签到,获得积分10
39秒前
沉静的浩然完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418690
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143513
捐赠科研通 4450562
什么是DOI,文献DOI怎么找? 2441313
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438