已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YipHosum发布了新的文献求助30
1秒前
兴奋的平松完成签到,获得积分10
2秒前
2秒前
world完成签到,获得积分10
3秒前
Akim应助ttt采纳,获得10
6秒前
甜甜完成签到 ,获得积分10
7秒前
钦点小黑发布了新的文献求助10
7秒前
YipHosum完成签到,获得积分10
7秒前
dean完成签到,获得积分10
7秒前
FashionBoy应助小铭的男仆采纳,获得10
9秒前
9秒前
11秒前
然大宝发布了新的文献求助10
12秒前
13秒前
13秒前
TZMY完成签到,获得积分10
14秒前
CYL发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
Akim应助科研通管家采纳,获得30
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
阿布应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
美好斓应助科研通管家采纳,获得100
16秒前
烟花应助科研通管家采纳,获得10
16秒前
mm应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
喜悦凡霜发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
阿布应助科研通管家采纳,获得10
17秒前
ttt发布了新的文献求助10
17秒前
Kin发布了新的文献求助10
20秒前
shark发布了新的文献求助10
20秒前
24秒前
刻苦迎波关注了科研通微信公众号
25秒前
康康小白杨完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634034
求助须知:如何正确求助?哪些是违规求助? 4730010
关于积分的说明 14987480
捐赠科研通 4791817
什么是DOI,文献DOI怎么找? 2559061
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479734