MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SunnyYim发布了新的文献求助10
刚刚
田様应助maomao采纳,获得10
1秒前
20011013发布了新的文献求助10
1秒前
sugkook完成签到,获得积分20
1秒前
自然香岚发布了新的文献求助10
1秒前
JamesPei应助下雨天采纳,获得10
1秒前
小桑桑完成签到,获得积分10
2秒前
2秒前
苏卿发布了新的文献求助100
2秒前
jack完成签到,获得积分10
3秒前
3秒前
3秒前
鞘皮发布了新的文献求助20
3秒前
活泼红牛发布了新的文献求助10
3秒前
3秒前
汉堡包应助墨西哥猪肉卷采纳,获得10
3秒前
3秒前
4秒前
芙芙完成签到,获得积分10
5秒前
MarcoPolo发布了新的文献求助10
5秒前
wangR完成签到,获得积分10
6秒前
6秒前
6秒前
yyyy发布了新的文献求助10
6秒前
夜神月完成签到 ,获得积分10
6秒前
6秒前
CodeCraft应助32采纳,获得10
7秒前
7秒前
好叭发布了新的文献求助10
7秒前
zhuzhu完成签到,获得积分10
7秒前
wxx完成签到 ,获得积分10
8秒前
宽宽发布了新的文献求助10
8秒前
lulu完成签到,获得积分20
8秒前
8秒前
9秒前
英吉利25发布了新的文献求助10
9秒前
小老头儿完成签到,获得积分10
9秒前
优美的冰巧完成签到 ,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563