MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
坚定笑蓝完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
领导范儿应助哈哈哈采纳,获得10
2秒前
灿灿呀发布了新的文献求助10
2秒前
idealist0315发布了新的文献求助10
2秒前
想去电影院完成签到,获得积分10
3秒前
fufu6发布了新的文献求助20
3秒前
Godspeed发布了新的文献求助10
3秒前
SHU发布了新的文献求助10
4秒前
桶桶完成签到,获得积分10
5秒前
椒盐丸子发布了新的文献求助10
5秒前
5秒前
5秒前
悦耳寒云完成签到,获得积分10
5秒前
勤奋以蓝完成签到,获得积分10
6秒前
风中冰香应助000采纳,获得10
6秒前
6秒前
7秒前
教主完成签到,获得积分10
7秒前
xiaofeizhu发布了新的文献求助10
7秒前
8秒前
疯狂的海亦完成签到,获得积分10
8秒前
北夏发布了新的文献求助10
8秒前
新新辛欣发布了新的文献求助10
8秒前
门门完成签到 ,获得积分10
9秒前
兴奋的听筠完成签到,获得积分10
9秒前
wangwang2168完成签到,获得积分10
10秒前
wenbo发布了新的文献求助10
11秒前
11秒前
欣喜灵波发布了新的文献求助10
11秒前
酷酷的听筠完成签到,获得积分20
11秒前
可爱的函函应助楼谷秋采纳,获得10
11秒前
银鱼在游完成签到,获得积分10
12秒前
坚定晓兰应助qwerty采纳,获得10
12秒前
iwersonshmtu发布了新的文献求助10
12秒前
litchi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060