MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助jou采纳,获得10
刚刚
刚刚
小皮不皮完成签到,获得积分10
刚刚
一生所爱完成签到 ,获得积分10
1秒前
1秒前
桐桐应助低空飞行采纳,获得10
1秒前
2秒前
邱佩群给邱佩群的求助进行了留言
2秒前
DJ完成签到,获得积分10
2秒前
鲜艳的三毒完成签到,获得积分10
3秒前
专注水壶完成签到,获得积分10
3秒前
顾矜应助代上渝采纳,获得10
4秒前
辛勤以晴发布了新的文献求助10
5秒前
我是老大应助一个大西瓜采纳,获得10
6秒前
247793325发布了新的文献求助10
6秒前
7秒前
8秒前
樂le发布了新的文献求助10
8秒前
科研通AI6应助不要逼我采纳,获得10
9秒前
9秒前
超开心发布了新的文献求助10
11秒前
慕青应助kyJYbs采纳,获得10
12秒前
12秒前
13秒前
苹果白凡发布了新的文献求助10
13秒前
14秒前
颜笙完成签到,获得积分10
15秒前
星沉静默发布了新的文献求助10
15秒前
15秒前
lmh发布了新的文献求助10
16秒前
爱吃大米发布了新的文献求助10
16秒前
上官若男应助corazon采纳,获得10
17秒前
522发布了新的文献求助10
18秒前
19秒前
19秒前
CodeCraft应助佟开开采纳,获得10
19秒前
20秒前
充电宝应助爱吃大米采纳,获得10
21秒前
又晴发布了新的文献求助30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962021
求助须知:如何正确求助?哪些是违规求助? 4222161
关于积分的说明 13150076
捐赠科研通 4006267
什么是DOI,文献DOI怎么找? 2192890
邀请新用户注册赠送积分活动 1206674
关于科研通互助平台的介绍 1118754