MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bkagyin应助微笑的老五采纳,获得10
1秒前
打打应助Y.J采纳,获得10
1秒前
权_888发布了新的文献求助10
1秒前
LIU发布了新的文献求助20
1秒前
希望天下0贩的0应助zrz采纳,获得10
1秒前
可爱的函函应助陈峰琦采纳,获得10
1秒前
高洪杨完成签到,获得积分10
1秒前
猇会不会发布了新的文献求助10
1秒前
所所应助浩洁采纳,获得10
1秒前
2秒前
3秒前
一个酸葡萄干完成签到,获得积分10
4秒前
风中晓霜完成签到,获得积分10
4秒前
5秒前
Owen应助虚心的靖仇采纳,获得10
5秒前
2021完成签到,获得积分10
5秒前
势均力敌完成签到,获得积分10
5秒前
5秒前
糊涂的老师完成签到,获得积分10
5秒前
祖翩跹完成签到,获得积分10
5秒前
苏俊彬关注了科研通微信公众号
5秒前
阿氏之光发布了新的文献求助10
6秒前
eurhfe发布了新的文献求助10
6秒前
aloe发布了新的文献求助10
7秒前
老实的百招完成签到,获得积分10
7秒前
waoller1发布了新的文献求助10
7秒前
7秒前
8秒前
乐观的小土豆完成签到 ,获得积分10
8秒前
在水一方应助YG97采纳,获得10
9秒前
自由的青槐完成签到 ,获得积分10
9秒前
9秒前
丘比特应助萍123采纳,获得10
10秒前
卓妮完成签到,获得积分10
11秒前
12秒前
12秒前
zyp发布了新的文献求助10
13秒前
风中晓霜发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556