亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 生物 数学分析 古生物学 经济 管理
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助dajiejie采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
典希子完成签到 ,获得积分10
21秒前
传奇3应助Zyc采纳,获得10
37秒前
汉堡包应助xl采纳,获得10
46秒前
Mika发布了新的文献求助20
1分钟前
光合作用完成签到,获得积分10
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
Orange应助儒雅的城采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Zyc发布了新的文献求助10
1分钟前
zgjc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xl完成签到,获得积分10
1分钟前
柳叶刀Z完成签到 ,获得积分10
1分钟前
Tushar发布了新的文献求助10
1分钟前
气球好饿完成签到 ,获得积分10
1分钟前
xl发布了新的文献求助10
1分钟前
1分钟前
XMH完成签到,获得积分20
1分钟前
1分钟前
wswswsws完成签到,获得积分10
1分钟前
XMH发布了新的文献求助10
2分钟前
Tushar完成签到,获得积分10
2分钟前
吃点红糖馒头完成签到 ,获得积分10
2分钟前
深情安青应助学者宫Sir采纳,获得10
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
Jasper应助糊涂的小王采纳,获得10
2分钟前
wonder041完成签到,获得积分10
2分钟前
完美世界应助学者宫Sir采纳,获得10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323651
求助须知:如何正确求助?哪些是违规求助? 4464878
关于积分的说明 13893694
捐赠科研通 4356431
什么是DOI,文献DOI怎么找? 2392828
邀请新用户注册赠送积分活动 1386336
关于科研通互助平台的介绍 1356405