MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clarie完成签到,获得积分10
1秒前
凶狠的绿兰完成签到 ,获得积分10
1秒前
张牧之完成签到 ,获得积分10
3秒前
温乘云完成签到,获得积分10
4秒前
Peng完成签到,获得积分10
4秒前
4秒前
6秒前
王巧巧完成签到,获得积分10
7秒前
英俊的铭应助坚强的思松采纳,获得10
8秒前
8秒前
拼搏的寒凝完成签到 ,获得积分10
8秒前
个性的抽象完成签到 ,获得积分10
8秒前
张怀月发布了新的文献求助10
9秒前
博博关注了科研通微信公众号
10秒前
玫瑰先森完成签到,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助30
13秒前
失眠成协发布了新的文献求助10
14秒前
Daodao发布了新的文献求助20
15秒前
哈哈哈发布了新的文献求助10
18秒前
滴滴答答完成签到 ,获得积分10
19秒前
说话要严谨完成签到 ,获得积分10
19秒前
黄景滨完成签到 ,获得积分10
20秒前
20秒前
隐形曼青应助Myownway采纳,获得10
20秒前
21秒前
呜呜呜啦完成签到,获得积分10
21秒前
甜瓜123完成签到,获得积分10
23秒前
1122发布了新的文献求助20
23秒前
研友_LpvQlZ完成签到,获得积分10
24秒前
fengliurencai完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
顾矜应助文言采纳,获得10
25秒前
26秒前
无畏发布了新的文献求助10
26秒前
韩薇发布了新的文献求助10
27秒前
27秒前
keeptg发布了新的文献求助10
27秒前
风偏偏完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741538
求助须知:如何正确求助?哪些是违规求助? 5402990
关于积分的说明 15342926
捐赠科研通 4883158
什么是DOI,文献DOI怎么找? 2624955
邀请新用户注册赠送积分活动 1573736
关于科研通互助平台的介绍 1530685