MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jwxstc发布了新的文献求助10
刚刚
刚刚
刚刚
akber123发布了新的文献求助30
刚刚
Yxian发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
科研通AI6应助dm11采纳,获得10
1秒前
2秒前
爆米花应助羊咩咩咩采纳,获得10
3秒前
kekemu完成签到,获得积分10
4秒前
momo发布了新的文献求助30
5秒前
5秒前
yyy发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
豆豆发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助jwxstc采纳,获得10
8秒前
8秒前
充电宝应助眯眯眼的世界采纳,获得10
9秒前
9秒前
迷路夜山发布了新的文献求助10
10秒前
小马甲应助轮回1奇点采纳,获得10
10秒前
小张快跑完成签到,获得积分20
10秒前
啊啊完成签到 ,获得积分10
10秒前
11秒前
plain发布了新的文献求助10
11秒前
starry完成签到,获得积分10
12秒前
所所应助李子昂采纳,获得10
12秒前
12秒前
13秒前
Wll发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
小张快跑发布了新的文献求助10
14秒前
15秒前
满天星完成签到,获得积分20
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583383
求助须知:如何正确求助?哪些是违规求助? 4667241
关于积分的说明 14766122
捐赠科研通 4609415
什么是DOI,文献DOI怎么找? 2529196
邀请新用户注册赠送积分活动 1498411
关于科研通互助平台的介绍 1467061