MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ripples完成签到,获得积分10
1秒前
彭于晏应助hongjing采纳,获得10
1秒前
科研通AI6应助wang采纳,获得10
1秒前
酷炫魂幽发布了新的文献求助10
2秒前
2秒前
浅蓝发布了新的文献求助10
3秒前
小杭76应助wocao采纳,获得10
3秒前
传奇3应助Refuel采纳,获得10
4秒前
huangbing123完成签到 ,获得积分10
4秒前
乐乐应助咩咩采纳,获得10
5秒前
漫天白沙完成签到 ,获得积分10
5秒前
tangzanwayne完成签到 ,获得积分10
6秒前
wanna发布了新的文献求助10
6秒前
6秒前
Wendell发布了新的文献求助10
7秒前
7秒前
项阑悦完成签到,获得积分10
8秒前
无骨鸡爪不长胖完成签到,获得积分10
8秒前
8秒前
monned完成签到 ,获得积分10
9秒前
冉景平完成签到 ,获得积分10
9秒前
9秒前
嘻嘻发布了新的文献求助10
10秒前
领导范儿应助Refuel采纳,获得10
10秒前
义气青丝发布了新的文献求助10
12秒前
名不显时心不朽完成签到,获得积分10
13秒前
乐乐乐发布了新的文献求助10
14秒前
林灏泽完成签到,获得积分10
14秒前
16秒前
17秒前
wanci应助Refuel采纳,获得10
18秒前
Wendell完成签到,获得积分10
18秒前
19秒前
完美世界应助wjw采纳,获得10
19秒前
chai发布了新的文献求助10
20秒前
小鹿完成签到 ,获得积分10
20秒前
乐观若烟完成签到 ,获得积分10
21秒前
22秒前
艺涵完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429