MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 古生物学 管理 经济 生物 数学分析
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tong77发布了新的文献求助10
刚刚
loren发布了新的文献求助40
刚刚
量子星尘发布了新的文献求助10
1秒前
moyan完成签到 ,获得积分10
1秒前
万能图书馆应助BB采纳,获得10
2秒前
2秒前
3秒前
Fred发布了新的文献求助10
3秒前
NexusExplorer应助jzy采纳,获得10
3秒前
科龙发布了新的文献求助10
4秒前
王娜发布了新的文献求助10
4秒前
SWZ完成签到,获得积分10
5秒前
牛马研究生完成签到,获得积分10
6秒前
6秒前
曾经书翠完成签到,获得积分20
7秒前
烟花应助小郑开心努力采纳,获得10
8秒前
8秒前
微笑立轩完成签到,获得积分10
9秒前
SWZ发布了新的文献求助100
9秒前
12秒前
方远锋完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
发发发完成签到 ,获得积分10
15秒前
今后应助SJ_Wang采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
斯文的飞雪完成签到,获得积分10
17秒前
啊啊发布了新的文献求助10
17秒前
SCI发发发发布了新的文献求助10
18秒前
徐徐完成签到,获得积分10
19秒前
19秒前
阿洁发布了新的文献求助10
19秒前
执着雪青应助海拾月采纳,获得10
19秒前
h123123发布了新的文献求助10
20秒前
情怀应助学术蟑螂采纳,获得10
21秒前
21秒前
研友_enP05n发布了新的文献求助10
22秒前
昀松完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019