亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 生物 数学分析 古生物学 经济 管理
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的泽洋完成签到 ,获得积分10
11秒前
爆米花应助动听葵阴采纳,获得10
21秒前
30秒前
31秒前
动听葵阴发布了新的文献求助10
36秒前
ieeat完成签到,获得积分10
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
huenguyenvan完成签到,获得积分10
1分钟前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
慕青应助阳光小馒头采纳,获得10
1分钟前
1分钟前
远行客HB完成签到,获得积分10
2分钟前
李心雨发布了新的文献求助20
2分钟前
2分钟前
远行客HB发布了新的文献求助10
2分钟前
CodeCraft应助村上春树的摩的采纳,获得100
2分钟前
浮游应助李心雨采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助断罪残影采纳,获得10
2分钟前
3分钟前
FairyLeaf发布了新的文献求助20
3分钟前
3分钟前
3分钟前
动听葵阴发布了新的文献求助10
3分钟前
丘比特应助热情的安彤采纳,获得10
4分钟前
4分钟前
Abdurrahman完成签到,获得积分10
4分钟前
oscar完成签到,获得积分10
4分钟前
dkswy完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助泽灵采纳,获得10
4分钟前
ykssss发布了新的文献求助10
4分钟前
ykssss完成签到,获得积分10
4分钟前
4分钟前
5分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
Stata@R发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198616
求助须知:如何正确求助?哪些是违规求助? 4379557
关于积分的说明 13638287
捐赠科研通 4235728
什么是DOI,文献DOI怎么找? 2323520
邀请新用户注册赠送积分活动 1321638
关于科研通互助平台的介绍 1272661