已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 生物 数学分析 古生物学 经济 管理
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
陶醉的蜜蜂完成签到,获得积分10
5秒前
乔木发布了新的文献求助10
5秒前
winter完成签到 ,获得积分10
7秒前
lijunliang完成签到,获得积分10
14秒前
英俊纸飞机完成签到,获得积分10
17秒前
6666hhhhhh发布了新的文献求助10
18秒前
袁粪到了发布了新的文献求助10
19秒前
研友_VZG7GZ应助开朗的觅柔采纳,获得10
20秒前
21秒前
23秒前
火星完成签到 ,获得积分10
24秒前
云霞完成签到 ,获得积分10
25秒前
27秒前
Lucas应助BOLI采纳,获得10
27秒前
zhangyimg发布了新的文献求助30
28秒前
Apple发布了新的文献求助80
29秒前
Lucas应助番茄酱采纳,获得10
29秒前
jjx1005完成签到 ,获得积分10
32秒前
艳阳天完成签到 ,获得积分10
33秒前
乔木完成签到,获得积分10
33秒前
斯文败类应助zhangyimg采纳,获得10
35秒前
我是老大应助Apple采纳,获得10
35秒前
suxili完成签到 ,获得积分10
36秒前
会科研的胡萝卜完成签到,获得积分10
37秒前
41秒前
酷波er应助郑郑采纳,获得10
48秒前
6666hhhhhh完成签到,获得积分10
48秒前
Yucorn完成签到 ,获得积分10
49秒前
整齐的忆彤完成签到,获得积分10
49秒前
健忘傲之发布了新的文献求助30
51秒前
51秒前
sunnn完成签到 ,获得积分10
51秒前
nadia发布了新的文献求助10
53秒前
搜集达人应助zhongzihao采纳,获得10
54秒前
54秒前
Stroeve完成签到,获得积分10
57秒前
魏佳奇完成签到 ,获得积分10
57秒前
阿治完成签到 ,获得积分10
58秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209852
求助须知:如何正确求助?哪些是违规求助? 4386958
关于积分的说明 13662002
捐赠科研通 4246451
什么是DOI,文献DOI怎么找? 2329737
邀请新用户注册赠送积分活动 1327489
关于科研通互助平台的介绍 1279915