MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction

计算机科学 任务(项目管理) 迭代函数 时间序列 算法 系列(地层学) 人工智能 机器学习 数学 生物 数学分析 古生物学 经济 管理
作者
Yong Rui,Qun Dai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:79: 227-253 被引量:20
标识
DOI:10.1016/j.asoc.2019.03.039
摘要

Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
yuxiao完成签到,获得积分10
2秒前
华仔应助称心的板栗采纳,获得10
2秒前
YANA完成签到,获得积分10
2秒前
2633148059完成签到,获得积分10
2秒前
3秒前
sunshine发布了新的文献求助20
3秒前
李健的小迷弟应助曾无忧采纳,获得10
3秒前
哈基米发布了新的文献求助10
3秒前
积极映安完成签到,获得积分10
3秒前
3秒前
欣慰电脑完成签到,获得积分20
4秒前
天天快乐应助燕子采纳,获得10
4秒前
ANG完成签到 ,获得积分10
4秒前
山川永不休完成签到 ,获得积分10
4秒前
4秒前
我是老大应助善良的秋蝶采纳,获得10
5秒前
5秒前
无心。完成签到,获得积分10
5秒前
Loooong应助郭mm采纳,获得10
5秒前
77发布了新的文献求助10
5秒前
杨恭鑫发布了新的文献求助10
5秒前
Tache发布了新的文献求助10
5秒前
5秒前
Loooong应助郭mm采纳,获得10
5秒前
lwh完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI6应助炙热的灵薇采纳,获得10
6秒前
梦里花落声应助郭mm采纳,获得10
6秒前
复杂的扬应助郭mm采纳,获得10
6秒前
zhy发布了新的文献求助10
7秒前
Loooong应助郭mm采纳,获得10
7秒前
善学以致用应助郭mm采纳,获得10
7秒前
7秒前
lalala应助天蓝采纳,获得10
7秒前
Sophia发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921