Learning to detect Android malware via opcode sequences

计算机科学 操作码 恶意软件 Android(操作系统) 人工智能 Android恶意软件 可扩展性 深度学习 机器学习 人工神经网络 系统调用 数据挖掘 操作系统
作者
Abdurrahman Pektaş,Tankut Acarman
出处
期刊:Neurocomputing [Elsevier]
卷期号:396: 599-608 被引量:71
标识
DOI:10.1016/j.neucom.2018.09.102
摘要

A large number of Android malware samples can be deployed as the variants of the previously known samples. In consequence, a classification system capable of supporting a large set of samples is required to secure Android platform. Although a large set of variants requires scalability for automatic detection and classification, it also presents a significant advantage about a richer dataset at the stage of discovering underlying malicious activities and extracting representative features. Deep Neural Networks are built by a complex structure of layers whose parameters can be tuned and trained in order to enhance classification statistical metric results. Emerging parallelization computing tools and processors reduce computation time. In this paper, we propose a deep learning Android malware detection method using features extracted from instruction call graphs. The presented method examines all possible execution paths and the balanced dataset improves deep neural learning benign execution paths versus malicious paths. Since there is not a publicly available model for Android malware detection, we train deep networks from scratch. Then, we apply a grid search method to seek the optimal parameters of the network and to discover the combination of the hyper-parameters, which maximizes the statistical metric values. To validate the effectiveness of the proposed method, we evaluate with a balanced dataset constituted by 24,650 malicious and 25,000 benign samples. We evaluate the deep network architecture with respect to different parameters and compare the statistical metric values including runtime with respect to baseline classifiers. Our experimental results show that the presented malware detection is reached at 91.42% level in accuracy and 91.91% in F-measure, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助wuyudelan采纳,获得10
1秒前
zky0216完成签到,获得积分10
1秒前
2秒前
毛豆爸爸发布了新的文献求助10
4秒前
坦率的丹烟完成签到 ,获得积分10
4秒前
风趣的梦露完成签到 ,获得积分10
4秒前
认真的南珍完成签到 ,获得积分20
5秒前
6秒前
7秒前
林森发布了新的文献求助10
9秒前
9秒前
那里有颗星星完成签到,获得积分10
9秒前
丙队长完成签到,获得积分10
10秒前
酷炫蚂蚁完成签到,获得积分20
11秒前
11秒前
科研通AI5应助叶子采纳,获得10
11秒前
感激不尽完成签到,获得积分10
11秒前
wuyudelan完成签到,获得积分10
12秒前
zstyry9998完成签到,获得积分10
14秒前
RH发布了新的文献求助10
14秒前
冷傲迎梦发布了新的文献求助10
14秒前
16秒前
weiv完成签到,获得积分10
18秒前
Teslwang完成签到,获得积分10
18秒前
18秒前
18秒前
zhangzhen发布了新的文献求助10
18秒前
英姑应助彬彬采纳,获得10
19秒前
传奇3应助maomao采纳,获得10
21秒前
稀罕你发布了新的文献求助10
22秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
22秒前
naonao完成签到,获得积分20
22秒前
摆烂的实验室打工人完成签到,获得积分10
22秒前
Jenny发布了新的文献求助50
24秒前
25秒前
hehe完成签到,获得积分20
25秒前
naonao发布了新的文献求助10
26秒前
Glufo完成签到,获得积分10
26秒前
27秒前
qqqqqq发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824