多元微积分
缺少数据
计算机科学
压缩传感
克罗内克产品
限制等距性
系列(地层学)
克罗内克三角洲
稀疏逼近
时间序列
数据挖掘
算法
代表(政治)
财产(哲学)
稀疏矩阵
模式识别(心理学)
人工智能
机器学习
政治
生物
量子力学
工程类
控制工程
哲学
认识论
政治学
古生物学
高斯分布
物理
法学
作者
Yan Guo,Xiaoxiang Song,Ning Li,Da‐Gang Fang
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2018-01-01
卷期号:6: 57239-57248
被引量:5
标识
DOI:10.1109/access.2018.2873414
摘要
The existence of missing data severely affects the establishment of correct data mining model from the raw data. Unfortunately, most of the existing missing data prediction approaches are inefficient to predict missing data from multivariable time series due to the low accuracy and poor stability property. To address this issue, we propose an efficient method using the novel Kronecker compressive sensing theory. First, we exploit the spatial and temporal properties of the multivariable time series to construct the sparse representation basis and design the measurement matrix according to the location of missing data. Accordingly, the missing data prediction problem is modeled as a sparse vector recovery problem. Then, we verify the validity of the model from two aspects: whether the sparse representation vector is sufficiently sparse and the sensing matrix satisfies the restricted isometry property of compressive sensing. Finally, we investigate the sparse recovery algorithms to find the best suited one in our application scenario. Simulation results indicate that the proposed method is highly efficient in predicting the missing data of multivariable time series.
科研通智能强力驱动
Strongly Powered by AbleSci AI