Delay-Minimization Routing for Heterogeneous VANETs With Machine Learning Based Mobility Prediction

分布式计算
作者
Yujie Tang,Nan Cheng,Wen Wu,Miao Wang,Yanpeng Dai,Xuemin Shen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (4): 3967-3979 被引量:75
标识
DOI:10.1109/tvt.2019.2899627
摘要

Establishing and maintaining end-to-end connections in a vehicular ad hoc network (VANET) is challenging due to the high vehicle mobility, dynamic inter-vehicle spacing, and variable vehicle density. Mobility prediction of vehicles can address the aforementioned challenge, since it can provide a better routing planning and improve overall VANET performance in terms of continuous service availability. In this paper, a centralized routing scheme with mobility prediction is proposed for VANET assisted by an artificial intelligence powered software-defined network (SDN) controller. Specifically, the SDN controller can perform accurate mobility prediction through an advanced artificial neural network technique. Then, based on the mobility prediction, the successful transmission probability and average delay of each vehicle's request under frequent network topology changes can be estimated by the roadside units (RSUs) or the base station (BS). The estimation is performed based on a stochastic urban traffic model in which the vehicle arrival follows a non-homogeneous Poisson process. The SDN controller gathers network information from RSUs and BS that are considered as the switches. Based on the global network information, the SDN controller computes optimal routing paths for switches (i.e., BS and RSU). While the source vehicle and destination vehicle are located in the coverage area of the same switch, further routing decision will be made by the RSUs or the BS independently to minimize the overall vehicular service delay. The RSUs or the BS schedule the requests of vehicles by either vehicle-to-vehicle or vehicle-to-infrastructure communication, from the source vehicle to the destination vehicle. Simulation results demonstrate that our proposed centralized routing scheme outperforms others in terms of transmission delay, and the transmission performance of our proposed routing scheme is more robust with varying vehicle velocity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助Mr_clf采纳,获得10
2秒前
追寻凌晴完成签到,获得积分10
2秒前
Cassie完成签到,获得积分10
2秒前
3秒前
3秒前
靠得住的小仙女完成签到,获得积分10
4秒前
2345应助ZY采纳,获得10
4秒前
jianguo完成签到,获得积分10
4秒前
4秒前
牛牛完成签到,获得积分20
4秒前
honoruru发布了新的文献求助10
4秒前
daheeeee发布了新的文献求助20
5秒前
5秒前
草莓钙片完成签到,获得积分10
6秒前
充电宝应助安静凡旋采纳,获得10
7秒前
8秒前
8秒前
刻苦的亦绿关注了科研通微信公众号
9秒前
9秒前
柠檬加冰发布了新的文献求助10
9秒前
研友_VZG7GZ应助陈橙采纳,获得50
9秒前
程琳发布了新的文献求助10
9秒前
大黄完成签到,获得积分10
10秒前
10秒前
七柱香完成签到,获得积分10
10秒前
11秒前
12秒前
迷路凌柏完成签到 ,获得积分10
12秒前
轻松的冥王星完成签到,获得积分10
12秒前
LFY应助uu采纳,获得10
12秒前
箱子完成签到,获得积分10
12秒前
科研通AI5应助稳重书双采纳,获得10
12秒前
12秒前
充电宝应助顺心迎南采纳,获得10
12秒前
不安红豆发布了新的文献求助10
13秒前
13秒前
庞雅阳完成签到,获得积分10
13秒前
13秒前
科研通AI5应助dmj采纳,获得30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246