An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing

材料科学 韧性 极限抗拉强度 复合材料 聚合物 纤维素 微观结构 聚乙烯醇 各向同性 生物相容性材料 纳米技术 生物医学工程 化学工程 工程类 物理 医学 量子力学
作者
Zhenxing Wang,Zijing Zhou,Sijie Wang,Xiaomin Yao,Xuewen Han,Wentao Cao,Junwen Pu
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:239: 109954-109954 被引量:63
标识
DOI:10.1016/j.compositesb.2022.109954
摘要

Inspired by the highly aligned, well-ordered microstructure, and anisotropic mechanical properties of biological soft tissues, artificial electronic skins (e-skins) have been widely reported in recent years. However, challenges remain in achieving green, high mechanical properties, and multifunctionality simultaneously. In this work, we present a smart e-skin system with an anisotropic structure that couples a cellulose scaffold (CS) derived from natural wood with a polyvinyl alcohol (PVA)/MXene nanosheets (PM) network through a facile freeze-thawing process, featuring high toughness and excellent conductivity. With the addition of a biocompatible cryo-protectant, the smart e-skin exhibit ambient stability, anti-freezing properties, and moisturizing capability. The strong cross-linking and bonding between the 3D hierarchical CS and PM polymer network enhancing the mechanical strength of the e-skin in a specific direction, and the tensile strength along the longitudinal direction reached 12.01 MPa. The wood-derived hydrogel e-skin is 75 times and 23 times stronger than the isotropic cellulose hydrogel and pure PVA hydrogel. The soft PM polymer network endows the rigid cellulose skeleton with outstanding flexibility. Importantly, the e-skin with remarkable electromechanical sensing can realize the real-time monitoring of various human motions. In addition, the e-skin can also realize the private information transmission and even object recognition in aquatic environments. This study provides a facile strategy for developing next-generation wearable devices and multifunctional e-skin systems with bionic characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助dfggg采纳,获得10
刚刚
自信画笔发布了新的文献求助10
1秒前
TheaGao发布了新的文献求助200
3秒前
4秒前
4秒前
huiluowork发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
jl发布了新的文献求助10
4秒前
5秒前
Akim应助温柔的迎荷采纳,获得10
6秒前
ala完成签到,获得积分10
6秒前
7秒前
包容凡英发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
调研昵称发布了新的文献求助10
10秒前
10秒前
10秒前
Lucky发布了新的文献求助10
11秒前
善学以致用应助jl采纳,获得10
12秒前
科研通AI5应助西兰花采纳,获得10
13秒前
慕青应助smoli采纳,获得30
13秒前
pcr163应助科研通管家采纳,获得50
14秒前
cdercder应助科研通管家采纳,获得20
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
yanzu发布了新的文献求助10
14秒前
14秒前
sirhai发布了新的文献求助10
15秒前
16秒前
mustard_sd完成签到,获得积分10
16秒前
生动的草莓完成签到 ,获得积分10
16秒前
17秒前
叶子完成签到,获得积分10
17秒前
orixero应助肖肖采纳,获得10
17秒前
笑笑完成签到,获得积分10
17秒前
tangtang发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546536
求助须知:如何正确求助?哪些是违规求助? 3123667
关于积分的说明 9356348
捐赠科研通 2822331
什么是DOI,文献DOI怎么找? 1551314
邀请新用户注册赠送积分活动 723326
科研通“疑难数据库(出版商)”最低求助积分说明 713699