Unmanned aerial vehicle image biological soil crust recognition based on UNet++

生物结皮 环境科学 干旱 计算机科学 结壳 土壤质地 土壤科学 遥感 地质学 土壤水分 地球物理学 古生物学
作者
Yu Liang,Zhenqi Hu,Fan Zhang,Kun Yang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (7): 2660-2676 被引量:4
标识
DOI:10.1080/01431161.2022.2066486
摘要

Biological soil crust is an important feature of desert ecosystem composition and surface landscape. Determining the role of biological soil crust in the energy flow and logistics cycle in the desert ecosystem is one of the frontier areas of ecological restoration in arid and semi-arid areas. Obtaining biological soil crust information from drone images is an efficient, fast, and low-cost method. However, due to the scattered and uneven growth of biological soil crusts and the complexity of the field environment, it is difficult to accurately extract biological soil crusts. In view of this, this study used the improved UNet++ model to extract biological soil crusts based on UAV image data. Firstly, the optimal Epoch, Backbone, and Loss function are selected and trained based on the network structure of UNet++ model. Then, the improved UNet++ model proposed in this paper, which takes ResNeXt as the Backbone and Soft Cross-Entropy Loss+Dice Loss as the Loss Function, is obtained. Finally, the test results of UNet++, U-Net, LinkNet, FPN, and PSPNet are compared with the improved UNet++ model in this paper. The results showed that the improved UNet++ model had the best segmentation effect, and the precision, recall, F1-Score, and IoU were 0.9788, 0.9501, 0.9495, and 0.9309, respectively. UAV image biological soil crust recognition based on the improved UNet++ model in this paper can obtain high-precision extraction results, provide good data support for studying the development of biological soil crusts in arid areas, and provide a new method for precise segmentation of different features in arid areas. In particular, it is of great significance to evaluate the governance effect of ecological restoration projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小呱发布了新的文献求助30
刚刚
活泼莫英发布了新的文献求助10
1秒前
meat12完成签到,获得积分10
2秒前
大个应助可靠的电源采纳,获得10
2秒前
3秒前
科研通AI2S应助魔幻蓉采纳,获得10
3秒前
3秒前
3秒前
4秒前
Ryo发布了新的文献求助10
5秒前
chen_hebo发布了新的文献求助100
6秒前
7秒前
shudder发布了新的文献求助10
8秒前
juanjuan完成签到,获得积分10
9秒前
程瑞哲发布了新的文献求助10
9秒前
独角兽完成签到 ,获得积分10
9秒前
种花兔完成签到,获得积分10
11秒前
高大迎曼完成签到,获得积分10
13秒前
Ryo完成签到,获得积分10
15秒前
科研通AI2S应助秋水浮萍采纳,获得10
16秒前
18秒前
RenchengHuang完成签到,获得积分10
19秒前
遇上就这样吧应助钵钵鸡采纳,获得30
20秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
20秒前
LaTeXer应助科研通管家采纳,获得50
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
棋士应助科研通管家采纳,获得10
21秒前
Rondab应助科研通管家采纳,获得50
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
yx_cheng应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
22秒前
扶桑发布了新的文献求助10
22秒前
啵啵完成签到 ,获得积分10
23秒前
25秒前
25秒前
生动的采枫完成签到 ,获得积分10
26秒前
txt233mega应助必过六级采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019