亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unmanned aerial vehicle image biological soil crust recognition based on UNet++

生物结皮 环境科学 干旱 计算机科学 结壳 土壤质地 土壤科学 遥感 地质学 土壤水分 地球物理学 古生物学
作者
Yu Liang,Zhenqi Hu,Fan Zhang,Kun Yang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (7): 2660-2676 被引量:4
标识
DOI:10.1080/01431161.2022.2066486
摘要

Biological soil crust is an important feature of desert ecosystem composition and surface landscape. Determining the role of biological soil crust in the energy flow and logistics cycle in the desert ecosystem is one of the frontier areas of ecological restoration in arid and semi-arid areas. Obtaining biological soil crust information from drone images is an efficient, fast, and low-cost method. However, due to the scattered and uneven growth of biological soil crusts and the complexity of the field environment, it is difficult to accurately extract biological soil crusts. In view of this, this study used the improved UNet++ model to extract biological soil crusts based on UAV image data. Firstly, the optimal Epoch, Backbone, and Loss function are selected and trained based on the network structure of UNet++ model. Then, the improved UNet++ model proposed in this paper, which takes ResNeXt as the Backbone and Soft Cross-Entropy Loss+Dice Loss as the Loss Function, is obtained. Finally, the test results of UNet++, U-Net, LinkNet, FPN, and PSPNet are compared with the improved UNet++ model in this paper. The results showed that the improved UNet++ model had the best segmentation effect, and the precision, recall, F1-Score, and IoU were 0.9788, 0.9501, 0.9495, and 0.9309, respectively. UAV image biological soil crust recognition based on the improved UNet++ model in this paper can obtain high-precision extraction results, provide good data support for studying the development of biological soil crusts in arid areas, and provide a new method for precise segmentation of different features in arid areas. In particular, it is of great significance to evaluate the governance effect of ecological restoration projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
牛头人完成签到,获得积分10
3秒前
4秒前
22秒前
乐乐应助zxcv22100采纳,获得10
24秒前
31秒前
35秒前
zxcv22100发布了新的文献求助10
36秒前
40秒前
43秒前
笨笨的完成签到,获得积分10
54秒前
orixero应助虚幻明杰采纳,获得10
1分钟前
1分钟前
1分钟前
sky发布了新的文献求助30
1分钟前
clytze完成签到,获得积分10
1分钟前
1分钟前
sky完成签到,获得积分10
1分钟前
记录者完成签到 ,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
完美的海完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
ppppppp_76发布了新的文献求助10
2分钟前
年糕完成签到 ,获得积分10
2分钟前
2分钟前
麦冬冬完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
nenoaowu发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322616
求助须知:如何正确求助?哪些是违规求助? 2953872
关于积分的说明 8567088
捐赠科研通 2631430
什么是DOI,文献DOI怎么找? 1439874
科研通“疑难数据库(出版商)”最低求助积分说明 667269
邀请新用户注册赠送积分活动 653767