马朗戈尼效应
表面张力
解算器
材料科学
计算流体力学
机械
水准点(测量)
蒸发
开源
软件
融合
对流
张力(地质)
机械工程
计算机科学
热力学
物理
复合材料
地质学
工程类
语言学
哲学
大地测量学
程序设计语言
极限抗拉强度
作者
Florian Wirth,Teresa Tonn,Markus Schöberl,Hermann Stefan,Hannes Birkhofer,Vasily Ploshikhin
标识
DOI:10.1088/1361-651x/ac4a26
摘要
Abstract Tangential surface tension forces on a gas–liquid interface due to surface tension gradients have been implemented in the computational fluid dynamics (CFD) solver icoReactingMultiphaseInterFoam provided by the open-source software environment of OpenFOAM OpenCFD Ltd (ESI Group) OpenFOAM (online) https://www.openfoam.com/ (accessed 21 May 2021), so that the Marangoni effect can be taken into account, which is a main driver of heat transfer in additive manufacturing processes that comprise a melt pool. The solver surpasses the capabilities of similar open-source projects by considering a wide range of physical effects, e.g. multiple phases, melting, solidification, evaporation, and laser beam heat sources with an arbitrary intensity distribution and thus makes it an appealing framework, especially for the simulation of the laser powder bed fusion (LPBF) process. Herein, all relevant details and derivation considering the Marangoni effect are provided and validated by means of a benchmark problem by comparing the obtained results with the available analytical solution, with the results obtained from a commercial CFD tool and with the results of other authors. The modified solver is additionally validated by comparing the results from LPBF simulations with experimental data. Furthermore, the influence of the surface tension modeling on the mushy region is investigated. The optimized implementation shows improvements of the simulation results in both the dimensions and shape of the melt pool and the resulting surface with regard to the experimental data.
科研通智能强力驱动
Strongly Powered by AbleSci AI