A novel Alzheimer’s disease detection approach using GAN-based brain slice image enhancement

鉴别器 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 分类器(UML) 神经影像学 深度学习 预处理器 特征提取 瓶颈 机器学习 神经科学 心理学 探测器 嵌入式系统 电信
作者
Tian Bai,Mingyu Du,Zhang Li,Lei Ren,Li Ruan,Yuan Yang,Guanghao Qian,Zihao Meng,Li Zhao,M. Jamal Deen
出处
期刊:Neurocomputing [Elsevier]
卷期号:492: 353-369 被引量:25
标识
DOI:10.1016/j.neucom.2022.04.012
摘要

With the prevalence and the enormous societal consequence on health of Alzheimer’s disease (AD), diagnosis of AD and its prodromal form, mild cognitive impairment (MCI) is essential for patient care, and has been a research hotspot in recent years. Existing studies have applied machine learning methods to perform AD early diagnosis by analyzing various biomarkers. However, the difficulty in extracting the low-dimensional high-level brain features that accurately reflect main AD-related variations of anatomical brain structures becomes a bottleneck of the diagnosis performance in most of the existing researches. To overcome this bottleneck, this paper proposes a novel three-component adversarial network-based AD detection method (brain slice generative adversarial network for Alzheimer’s disease detection, BSGAN-ADD) to predict the disease category. BSGAN-ADD combines generative adversarial network (GAN)-based brain slice image enhancement and deep convolutional neural network (CNN)-based AD detection. In BSGAN-ADD, under the restriction of the discriminator, the generator learns to integrate the disease category feedbacks from classifier into 2D-brain slice image reconstruction process for image enhancement in the training phase. In the prediction phase, the stacked CNN layers in the generator are used to extract high-level brain features from category-enhanced 2D-brain slice images. And the classifier receives the extracted brain features to output the posterior probabilities of diseased states (Normal, AD and MCI). Experimental results on two real-world datasets (Alzheimer’s disease neuroimaging initiative, ANDI, Open Access Series of Imaging Studies OASIS) demonstrate that the new feature extraction process used in BSGAN-ADD can extract more representative high-level brain features to achieve a significant diagnosis performance gain compared with several typical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李木子发布了新的文献求助10
1秒前
Zzz发布了新的文献求助10
1秒前
乐天发布了新的文献求助10
2秒前
动人的莞发布了新的文献求助10
3秒前
Drink完成签到,获得积分10
4秒前
FJ发布了新的文献求助10
4秒前
没有籽的火龙果完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
999完成签到 ,获得积分10
7秒前
zzx完成签到,获得积分20
9秒前
10秒前
维多利亚发布了新的文献求助30
10秒前
痴情的雨真完成签到,获得积分10
11秒前
11秒前
zn发布了新的文献求助10
12秒前
摇不滚摇滚完成签到 ,获得积分10
13秒前
含蓄初之发布了新的文献求助10
14秒前
冷静硬币发布了新的文献求助10
14秒前
RR发布了新的文献求助10
14秒前
Praktika完成签到,获得积分10
15秒前
frinkle完成签到,获得积分10
15秒前
123发布了新的文献求助10
16秒前
乔qiqiqiqi完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
无花果应助Bolaka采纳,获得10
20秒前
斯文败类应助维多利亚采纳,获得30
20秒前
李健应助冷静硬币采纳,获得10
20秒前
21秒前
22秒前
Angie完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
数字生命发布了新的文献求助10
24秒前
Jasper应助木子采纳,获得10
26秒前
瞌睡雪发布了新的文献求助10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595