Global path planning based on BIM and physics engine for UGVs in indoor environments

运动规划 弹道 计算机科学 路径(计算) 互操作性 模拟 无人地面车辆 实时计算 人工智能 机器人 计算机网络 操作系统 天文 物理
作者
Zhengyi Chen,Keyu Chen,Changhao Song,Xiao Zhang,Jack Chin Pang Cheng,Dezhi Li
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:139: 104263-104263 被引量:8
标识
DOI:10.1016/j.autcon.2022.104263
摘要

This paper proposes a global path planning (GPP) system based on building information modeling (BIM) and physics engine for unmanned ground vehicles (UGVs) operations in indoor environments. Firstly, UGV configuration is integrated into BIM as a knowledge base of GPP system by customized IFC structure, with which a multi-layer map generation method is proposed with improved logic and efficiency. Secondly, a UGV-centric A* path planning algorithm is designed by considering UGV's properties, including mobility-based primitive expansion, geometry-based collision checking, mobility-based cost setting, and mobility-based analytical expansion. Finally, a reliable trajectory generation method is developed based on physics engine, followed with a novel spatiotemporal coordination method for efficient collision avoidance. The whole GPP system is validated in a representative university building floor and a common inspection UGV. It is demonstrated that UGV-integrated BIM improves the resources interoperability for the whole system, and the map components are clarified clearly for efficient generation and maintenance. Besides, the UGV-centric A* performs a 100% success rate in congested environments where traditional A* always fail. It can even reduce almost 50% of the trajectory time and steering jerk in open scenarios than traditional A*, but still with an acceptable computation speed (less than 0.6 s). Finally, trajectory coordination saves 50% of path traveling time compared with the general queue method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏强发布了新的文献求助10
1秒前
1秒前
理躺丁真完成签到,获得积分10
2秒前
Criminology34应助赶路人采纳,获得10
2秒前
3秒前
zeannezg发布了新的文献求助10
4秒前
Dun完成签到,获得积分10
6秒前
6秒前
zyt完成签到,获得积分10
6秒前
8秒前
8秒前
atterct完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
weiboo发布了新的文献求助10
9秒前
atterct发布了新的文献求助10
11秒前
华仔应助火星上的碧空采纳,获得10
11秒前
科研通AI2S应助Flowey采纳,获得10
11秒前
新年快乐完成签到,获得积分10
11秒前
追剧狂魔完成签到,获得积分10
12秒前
12秒前
不吃了发布了新的文献求助30
13秒前
13秒前
乐乐应助葡萄小伊ovo采纳,获得10
14秒前
greatsnow发布了新的文献求助10
14秒前
15秒前
安详的真完成签到 ,获得积分20
15秒前
汉堡包应助jason采纳,获得10
15秒前
yoyo发布了新的文献求助10
16秒前
安小安完成签到,获得积分10
16秒前
南淮完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
reegdsgsfd发布了新的文献求助10
19秒前
摸电门的猫完成签到,获得积分10
20秒前
20秒前
01231009yrjz完成签到,获得积分10
20秒前
bkagyin应助zhuxi采纳,获得10
20秒前
wanci应助yoyo采纳,获得10
21秒前
山川行里发布了新的文献求助10
22秒前
科研通AI2S应助赶路人采纳,获得10
22秒前
烟花应助姚依林采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153393
求助须知:如何正确求助?哪些是违规求助? 4348981
关于积分的说明 13540659
捐赠科研通 4191526
什么是DOI,文献DOI怎么找? 2299002
邀请新用户注册赠送积分活动 1298954
关于科研通互助平台的介绍 1243960