A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection

合成孔径雷达 计算机科学 人工智能 职位(财务) 杂乱 计算机视觉 水准点(测量) 目标检测 遥感 模式识别(心理学) 雷达 地质学 电信 财务 大地测量学 经济
作者
Yun Feng,Jie Chen,Zhixiang Huang,Huiyao Wan,Runfan Xia,Bocai Wu,Long Sun,Mengdao Xing
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (8): 1908-1908 被引量:10
标识
DOI:10.3390/rs14081908
摘要

As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助Cyber_relic采纳,获得10
刚刚
呆萌笑晴完成签到,获得积分10
刚刚
1秒前
1秒前
Isabel完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
李爱国应助葡萄采纳,获得10
2秒前
2秒前
利奥发布了新的文献求助10
3秒前
maxsis完成签到,获得积分10
3秒前
zxwz关注了科研通微信公众号
3秒前
一点发布了新的文献求助10
3秒前
NexusExplorer应助。.。采纳,获得10
3秒前
双枪林黛玉完成签到,获得积分10
3秒前
3秒前
共享精神应助小烊采纳,获得10
3秒前
4秒前
完美的机器猫完成签到,获得积分20
4秒前
进击的PhD应助lele采纳,获得50
4秒前
研友_ZGDVz8完成签到,获得积分10
5秒前
5秒前
英姑应助遵义阿杜采纳,获得10
5秒前
aoc发布了新的文献求助10
5秒前
5秒前
mxs完成签到,获得积分10
5秒前
Orange应助书文混四方采纳,获得10
6秒前
科目三应助kkk采纳,获得10
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108