Development of FBG Humidity Sensor via Controlled Annealing Temperature of Additive Enhanced ZnO Nanostructure Coating

材料科学 湿度 纳米结构 涂层 相对湿度 退火(玻璃) 吸附 纳米技术 复合材料 化学工程 光电子学 冶金 化学 有机化学 工程类 热力学 物理
作者
Muhammad Arif Riza,Yun Ii Go,Robert R. J. Maier,Sulaiman Wadi Harun,Siti Barirah Ahmad Anas
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:68: 102802-102802 被引量:6
标识
DOI:10.1016/j.yofte.2021.102802
摘要

Hygroscopic materials are often explored and utilized as a sensing element in various devices for many different industries. Optical based sensors operate in conjunction with materials that are reactive to the parametric changes in the environment. Modified synthesis process allows formation of unique and novel nanostructures that can potentially be adapted as a sensor. This study focuses on characterizing hygroscopic behavior and exploring the sensing integration of additive enhanced zinc oxide coating for application in FBG as humidity sensor. ZnO-HMT was observed under a microscope within varied relative humidity levels. All samples of ZnO-HMT annealed at different temperatures showed water adsorption with water droplets of various sizes (∼50 µm). Hygroscopic characterization via technique adopted from ASTM- reveals that sample annealed with 140 °C showed best water adsorption and release. The sample annealed at 140 °C was then coated on to a uniform FBG and tested within sealed chamber with varying humidity range between 40 and 80 RH%. The optical spectrum was combined, and wavelength shifts has been analyzed. The sensitivity of the FBG sensor achieved up to 0.0008 nm/% within range of 40 – 80 % humidity with > 87 % linearity. The development of the low temperature modified ZnO nanostructure coated on the FBG as a humidity sensor was successful. The nanostructure can have potential impact in pharmaceutical and power storage industries due to its simplicity in synthesis which brings about lower manufacturing costs of materials for optical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Junly完成签到 ,获得积分10
1秒前
英姑应助安然采纳,获得10
1秒前
2秒前
好困应助魔幻若血采纳,获得10
3秒前
3秒前
领导范儿应助鞑靼采纳,获得10
4秒前
echo发布了新的文献求助10
4秒前
4秒前
热心的善愁完成签到,获得积分10
5秒前
彼岸发布了新的文献求助10
5秒前
6秒前
赵姐姐完成签到 ,获得积分10
8秒前
xiao双月发布了新的文献求助10
8秒前
9秒前
无花果应助Shaw采纳,获得10
9秒前
小黄发布了新的文献求助10
9秒前
10秒前
10秒前
姗姗完成签到,获得积分10
10秒前
雪飞杨发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
朱颜发布了新的文献求助10
12秒前
YL发布了新的文献求助10
13秒前
13秒前
毛123完成签到,获得积分10
13秒前
喵了个咪发布了新的文献求助10
14秒前
华仔应助lupeichun采纳,获得10
14秒前
14秒前
15秒前
高贵以南完成签到,获得积分10
15秒前
淡定的仙人掌完成签到,获得积分10
15秒前
1325850238发布了新的文献求助10
16秒前
zly发布了新的文献求助10
16秒前
16秒前
外向一一发布了新的文献求助30
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655