Multicenter External Validation of a Nomogram for Predicting Positive Prostate-specific Membrane Antigen/Positron Emission Tomography Scan in Patients with Prostate Cancer Recurrence

列线图 医学 前列腺癌 前列腺切除术 前列腺特异性抗原 正电子发射断层摄影术 生化复发 人口 逻辑回归 谷氨酸羧肽酶Ⅱ 核医学 内科学 肿瘤科 放射科 泌尿科 癌症 环境卫生
作者
Lorenzo Bianchi,Paolo Castellucci,Andrea Farolfi,Matteo Droghetti,Carlos Artigas,José Alberto Dias Leite,P. Corona,Qaid Ahmed Shagera,Renata Moreira,C.J. González,Marcelo A. Queiroz,Felipe de Galiza Barbosa,Riccardo Schiavina,Désirèe Deandreis,Stefano Fanti,Francesco Ceci
出处
期刊:European Urology Oncology [Elsevier]
卷期号:6 (1): 41-48 被引量:27
标识
DOI:10.1016/j.euo.2021.12.002
摘要

A nomogram has recently been developed to predict 68Ga-labeled prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/computed tomography (PSMA-PET) results in recurrent prostate cancer (PCa) patients. To perform external validation of the original nomogram in a multicentric setting. A total of 1639 patients who underwent PSMA-PET for prostate-specific antigen (PSA) relapse after radical therapy were retrospectively included from six high-volume PET centers. The external cohort was stratified according to clinical setting categories: group 1: first-time biochemical recurrence (n = 774); group 2: PSA relapse after salvage therapy (n = 499); group-3: biochemical persistence after radical prostatectomy (n = 210); and group-4: advanced-stage PCa before second-line systemic therapies (n = 124). PSMA-PET in recurrent PCa. PSMA-PET detection rate was assessed in the overall population and in each subgroup. A multivariable logistic regression model was produced to evaluate the predictors of a positive scan. The performance characteristics of the model were assessed by quantifying the predictive accuracy (PA) according to model calibration. The Youden’s index was used to find the best nomogram’s cutoff. Decision curve analysis (DCA) was implemented to quantify the nomogram’s clinical net benefit. In the external cohort, the overall detection rate was 53.8% versus 51.2% in the original population. At multivariate analysis, International Society of Urological Pathology grade group, PSA, PSA doubling time, and clinical setting were independent predictors of a positive scan (all p ≤ 0.02). The PA of the nomogram was identical to the original model (82.0%); the model showed an optimal calibration curve. The best nomogram’s cutoff was 55%. In the DCA, the nomogram revealed clinical net benefit when the threshold nomogram probabilities were ≥20%. The retrospective design is a major limitation. The original nomogram exhibited excellent characteristics on external validation. The incidence of a false negative scan can be reduced if PSMA-PET is performed when the predicted probability is ≥20%. A nomogram has been developed to predict prostate-specific membrane antigen/positron emission tomography (PSMA-PET) results for recurrent prostate cancer (PCa). The nomogram represents an easy tool in the decision-making process of recurrent PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饼饼完成签到,获得积分10
刚刚
刚刚
舒心师发布了新的文献求助10
1秒前
zyy发布了新的文献求助10
1秒前
1秒前
2秒前
Hus11221发布了新的文献求助10
2秒前
3秒前
1569lei完成签到 ,获得积分10
3秒前
王抗抗发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
江鑫楷发布了新的文献求助10
5秒前
5秒前
夏禾发布了新的文献求助10
6秒前
丘比特应助不是山谷采纳,获得10
6秒前
dou完成签到,获得积分10
6秒前
7秒前
乐乐应助木头人采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
JY完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助Chen采纳,获得10
8秒前
fffff发布了新的文献求助20
8秒前
Twonej应助nuture采纳,获得30
8秒前
9秒前
9秒前
9秒前
Bella发布了新的文献求助10
10秒前
MX120251336发布了新的文献求助10
10秒前
AishuangQi完成签到,获得积分10
11秒前
Albert发布了新的文献求助10
11秒前
yl发布了新的文献求助10
12秒前
自由芷完成签到,获得积分20
12秒前
11发布了新的文献求助10
12秒前
tetrakis完成签到,获得积分10
12秒前
糟糕的颜发布了新的文献求助10
12秒前
打打应助江2024采纳,获得10
12秒前
小科完成签到,获得积分10
13秒前
zpp发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721182
求助须知:如何正确求助?哪些是违规求助? 5264527
关于积分的说明 15293440
捐赠科研通 4870438
什么是DOI,文献DOI怎么找? 2615484
邀请新用户注册赠送积分活动 1565349
关于科研通互助平台的介绍 1522340