Module-scale analysis of low-salt-rejection reverse osmosis: Design guidelines and system performance

卤水 反渗透 盐度 正渗透 多阶段 能源消耗 工艺工程 化学 化学工程 环境工程 环境科学 工程类 地质学 有机化学 电气工程 海洋学 生物化学
作者
Yuhao Du,Zhangxin Wang,Nathanial J. Cooper,Jack Gilron,Menachem Elimelech
出处
期刊:Water Research [Elsevier]
卷期号:209: 117936-117936 被引量:16
标识
DOI:10.1016/j.watres.2021.117936
摘要

Low-salt-rejection reverse osmosis (LSRRO) is a novel reverse osmosis (RO)-based technology that can highly concentrate brines using moderate operating pressures. In this study, we investigate the performance of LSRRO membrane modules and systems using module-scale analysis. Specifically, we correlate the observed salt rejection of an LSRRO module with the water and salt permeabilities of the RO membrane. We then elaborate the impact of membrane properties and operating conditions on the performance of a 2-stage LSRRO, providing design guidelines for LSRRO systems. We further compare the performance of 2-stage and 3-stage LSRRO systems, showing that an LSRRO system with more stages is not always favored due to a larger energy consumption. The performance of a 3-stage LSRRO in treating different feed solutions for minimal/zero liquid discharge (MLD/ZLD) applications is then evaluated. Based on our results, when treating feed waters with a relatively low salinity (e.g., 0.1 M or ∼5,800 mg L−1 NaCl), the 3-stage LSRRO can achieve a concentrated brine that can be directly sent to the thermal brine crystallizers (i.e., brine concentration > 4 M or ∼240,000 mg L−1 NaCl), and the corresponding specific energy consumption (SEC) is only ∼3 kWh m−3. When treating feed waters with a relatively high salinity (e.g., 0.6 M or ∼35,000 mg L−1 NaCl), the brine from the 3-stage LSRRO can be ∼80 % more concentrated compared to that from conventional RO, while the corresponding SEC does not exceed 6 kWh m−3. Our results demonstrate that LSRRO can substantially advance minimal/zero liquid discharge (MLD/ZLD) applications because it can significantly minimize the use of thermal brine concentrators. We conclude with a discussion on the practicability of LSRRO and highlight future research needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锋feng完成签到 ,获得积分10
刚刚
Sofia完成签到,获得积分0
1秒前
1秒前
天人合一完成签到,获得积分0
2秒前
2秒前
所所应助MailkMonk采纳,获得10
2秒前
穆茹妖发布了新的文献求助10
3秒前
3秒前
4秒前
dddd完成签到,获得积分10
5秒前
zhui发布了新的文献求助10
5秒前
八十发布了新的文献求助10
6秒前
鹿芩完成签到,获得积分10
7秒前
luxxxiu完成签到,获得积分10
9秒前
顺顺关注了科研通微信公众号
9秒前
眼睛大老姆完成签到,获得积分10
9秒前
18275412695完成签到,获得积分10
9秒前
10秒前
科目三应助xjtu采纳,获得10
10秒前
11秒前
11秒前
在水一方应助热情芝麻采纳,获得10
11秒前
害羞的玉米完成签到,获得积分10
11秒前
13秒前
13秒前
李来仪发布了新的文献求助10
14秒前
英姑应助yangyong采纳,获得10
14秒前
14秒前
NexusExplorer应助通通通采纳,获得10
14秒前
liying完成签到,获得积分10
15秒前
15秒前
16秒前
王石雨晨完成签到 ,获得积分10
16秒前
16秒前
18275412695发布了新的文献求助10
16秒前
研0完成签到,获得积分10
17秒前
丁昆发布了新的文献求助10
18秒前
锦墨人生发布了新的文献求助30
19秒前
科研通AI5应助猪猪hero采纳,获得10
19秒前
NexusExplorer应助无情的白桃采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794