Seamless Texture Optimization for RGB-D Reconstruction

计算机科学 人工智能 计算机视觉 纹理图谱 图像纹理 纹理过滤 投影纹理映射 RGB颜色模型 纹理映射 纹理压缩 重影 背景(考古学) 图像分割 分割 生物 古生物学
作者
Yanping Fu,Qingan Yan,Jie Liao,Huajian Zhou,Jin Tang,Chunxia Xiao
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1845-1859 被引量:7
标识
DOI:10.1109/tvcg.2021.3134105
摘要

Restoring high-fidelity textures for 3D reconstructed models are an increasing demand in AR/VR, cultural heritage protection, entertainment, and other relevant fields. Due to geometric errors and camera pose drifting, existing texture mapping algorithms are either plagued by blurring and ghosting or suffer from undesirable visual seams. In this paper, we propose a novel tri-directional similarity texture synthesis method to eliminate the texture inconsistency in RGB-D 3D reconstruction and generate visually realistic texture mapping results. In addition to RGB color information, we incorporate a novel color image texture detail layer serving as an additional context to improve the effectiveness and robustness of the proposed method. First, we select an optimal texture image for each triangle face of the reconstructed model to avoid texture blurring and ghosting. During the selection procedure, the texture details are weighted to avoid generating texture chart partitions across high-frequency areas. Then, we optimize the camera pose of each texture image to align with the reconstructed 3D shape. Next, we propose a tri-directional similarity function to resynthesize the image context within the boundary stripe of texture charts, which can significantly diminish the occurrence of texture seams. Finally, we introduce a global color harmonization method to address the color inconsistency between texture images captured from different viewpoints. The experimental results demonstrate that the proposed method outperforms state-of-the-art texture mapping methods and effectively overcomes texture tearing, blurring, and ghosting artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助陈年大苏打采纳,获得10
1秒前
丘比特应助无奈芮采纳,获得10
1秒前
李爱国应助暮封采纳,获得10
2秒前
cyp发布了新的文献求助10
3秒前
81s完成签到 ,获得积分10
4秒前
Owen应助陶醉觅夏采纳,获得10
6秒前
my完成签到,获得积分10
7秒前
orixero应助司马含卉采纳,获得10
7秒前
9秒前
可爱山彤发布了新的文献求助10
10秒前
11秒前
11秒前
星辰大海应助HelenZ采纳,获得10
13秒前
哈哈完成签到 ,获得积分10
13秒前
无奈芮发布了新的文献求助10
13秒前
风雨无阻完成签到,获得积分10
15秒前
sylviawj完成签到,获得积分10
15秒前
16秒前
81s关注了科研通微信公众号
17秒前
20秒前
彭凯完成签到,获得积分10
20秒前
Dandy完成签到,获得积分10
21秒前
21秒前
22秒前
bill完成签到,获得积分10
22秒前
斯文败类应助次一口8采纳,获得10
22秒前
Kenina完成签到,获得积分10
24秒前
26秒前
彭凯发布了新的文献求助10
27秒前
柯氏气团不是气团完成签到,获得积分10
28秒前
共享精神应助你好采纳,获得10
28秒前
Ai完成签到,获得积分10
28秒前
淡定的巧荷完成签到,获得积分10
29秒前
栀子发布了新的文献求助10
30秒前
刺猬快快跑完成签到,获得积分10
31秒前
华仔应助tianyy采纳,获得10
32秒前
32秒前
白小施发布了新的文献求助10
32秒前
一一应助那小子真帅采纳,获得10
33秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264