Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments

杂草 作物 卷积神经网络 杂草防治 计算机科学 农学 人工智能 生物
作者
Bishwa B. Sapkota,Changjian Hu,Muthukumar Bagavathiannan
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13 被引量:12
标识
DOI:10.3389/fpls.2022.837726
摘要

Convolutional neural networks (CNNs) have revolutionized the weed detection process with tremendous improvements in precision and accuracy. However, training these models is time-consuming and computationally demanding; thus, training weed detection models for every crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed detection model trained for a specific crop may perform in other crops. In this study, a CNN model was trained to detect morningglories and grasses in cotton. Assessments were made to gauge the potential of the very model in detecting the same weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting at weed species level). In addition, the main cotton dataset was supplemented with different amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test datasets under both schemes (Average Precision-AP: 0.83–0.88 and Mean Average Precision-mAP: 0.65–0.79). The same models performed differently over other crops under both frameworks (AP: 0.33–0.83 and mAP: 0.40–0.85). In particular, relatively higher accuracies were observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant improvements in cross-crop applicability were further observed when additional corn and soybean images were added to the model training. These findings provide valuable insights into improving global applicability of weed detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anran完成签到 ,获得积分10
1秒前
念与惜完成签到 ,获得积分10
1秒前
1秒前
woodword发布了新的文献求助10
1秒前
ming完成签到,获得积分10
1秒前
wangtubianou发布了新的文献求助10
1秒前
1秒前
2秒前
FashionBoy应助SCIER采纳,获得30
2秒前
lou发布了新的文献求助10
2秒前
maolizi完成签到,获得积分10
4秒前
YJH完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
iufan发布了新的文献求助10
5秒前
5秒前
5秒前
可靠的青槐完成签到,获得积分10
7秒前
7秒前
Soche发布了新的文献求助10
7秒前
7秒前
明明明明明明明明z完成签到,获得积分10
8秒前
云fly发布了新的文献求助10
9秒前
长情伊完成签到,获得积分20
9秒前
123木头人完成签到,获得积分10
10秒前
Jing完成签到,获得积分20
10秒前
Yooki完成签到,获得积分10
10秒前
格格星完成签到,获得积分10
10秒前
动听曼荷完成签到,获得积分10
11秒前
Chuck给Chuck的求助进行了留言
11秒前
卡卡西完成签到,获得积分10
12秒前
王大帅哥完成签到,获得积分10
12秒前
小芭乐完成签到 ,获得积分10
12秒前
mmol发布了新的文献求助10
13秒前
13秒前
14秒前
完美世界应助Jing采纳,获得10
14秒前
DG完成签到,获得积分10
14秒前
绿地土狗完成签到,获得积分10
14秒前
Yr完成签到,获得积分10
14秒前
梨涡给梨涡的求助进行了留言
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792