Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments

杂草 作物 卷积神经网络 杂草防治 计算机科学 农学 人工智能 生物
作者
Bishwa B. Sapkota,Changjian Hu,Muthukumar Bagavathiannan
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13 被引量:12
标识
DOI:10.3389/fpls.2022.837726
摘要

Convolutional neural networks (CNNs) have revolutionized the weed detection process with tremendous improvements in precision and accuracy. However, training these models is time-consuming and computationally demanding; thus, training weed detection models for every crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed detection model trained for a specific crop may perform in other crops. In this study, a CNN model was trained to detect morningglories and grasses in cotton. Assessments were made to gauge the potential of the very model in detecting the same weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting at weed species level). In addition, the main cotton dataset was supplemented with different amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test datasets under both schemes (Average Precision-AP: 0.83–0.88 and Mean Average Precision-mAP: 0.65–0.79). The same models performed differently over other crops under both frameworks (AP: 0.33–0.83 and mAP: 0.40–0.85). In particular, relatively higher accuracies were observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant improvements in cross-crop applicability were further observed when additional corn and soybean images were added to the model training. These findings provide valuable insights into improving global applicability of weed detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助夜已深采纳,获得10
刚刚
刚刚
爆米花应助尤珩采纳,获得10
刚刚
xss关闭了xss文献求助
刚刚
1秒前
不加糖完成签到,获得积分10
1秒前
wanayu发布了新的文献求助10
2秒前
zxzb发布了新的文献求助10
2秒前
研友_Zb1rln完成签到,获得积分10
2秒前
上官若男应助dy采纳,获得10
3秒前
3秒前
3秒前
毅梦完成签到,获得积分10
3秒前
3秒前
Master_Ye发布了新的文献求助10
4秒前
酒尚温完成签到 ,获得积分10
4秒前
4秒前
徐昊雯发布了新的文献求助10
4秒前
5秒前
5秒前
跳跃墨镜发布了新的文献求助10
6秒前
十六夜完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
丰富的鞅完成签到,获得积分10
9秒前
9秒前
户学静发布了新的文献求助10
9秒前
自然的凝冬应助ljz910005采纳,获得20
9秒前
10秒前
10秒前
10秒前
QAINNNNN完成签到,获得积分20
10秒前
时尚浩轩完成签到 ,获得积分10
10秒前
King16完成签到,获得积分10
10秒前
兰彻发布了新的文献求助10
10秒前
sfwrbh完成签到,获得积分10
11秒前
在水一方应助开心金毛采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437