亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments

杂草 作物 卷积神经网络 杂草防治 计算机科学 农学 人工智能 生物
作者
Bishwa B. Sapkota,Changjian Hu,Muthukumar Bagavathiannan
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13 被引量:12
标识
DOI:10.3389/fpls.2022.837726
摘要

Convolutional neural networks (CNNs) have revolutionized the weed detection process with tremendous improvements in precision and accuracy. However, training these models is time-consuming and computationally demanding; thus, training weed detection models for every crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed detection model trained for a specific crop may perform in other crops. In this study, a CNN model was trained to detect morningglories and grasses in cotton. Assessments were made to gauge the potential of the very model in detecting the same weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting at weed species level). In addition, the main cotton dataset was supplemented with different amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test datasets under both schemes (Average Precision-AP: 0.83–0.88 and Mean Average Precision-mAP: 0.65–0.79). The same models performed differently over other crops under both frameworks (AP: 0.33–0.83 and mAP: 0.40–0.85). In particular, relatively higher accuracies were observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant improvements in cross-crop applicability were further observed when additional corn and soybean images were added to the model training. These findings provide valuable insights into improving global applicability of weed detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
寻风完成签到,获得积分10
5秒前
呼斯冷发布了新的文献求助10
6秒前
7秒前
8秒前
FIGGIEKIO发布了新的文献求助10
12秒前
东风完成签到,获得积分10
13秒前
搜集达人应助nnn7采纳,获得10
13秒前
CodeCraft应助重要的夏烟采纳,获得10
14秒前
15秒前
呼斯冷完成签到,获得积分20
15秒前
Ava应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
波波完成签到 ,获得积分10
21秒前
redamancy完成签到 ,获得积分10
23秒前
Jasper应助chenhua5460采纳,获得10
26秒前
FIGGIEKIO完成签到,获得积分10
35秒前
35秒前
36秒前
39秒前
chenhua5460发布了新的文献求助10
39秒前
usora发布了新的文献求助10
41秒前
44秒前
虚心怜阳发布了新的文献求助10
44秒前
Wenzel发布了新的文献求助10
46秒前
usora完成签到,获得积分10
51秒前
友好听云发布了新的文献求助10
54秒前
58秒前
1分钟前
1分钟前
Zyhaou发布了新的文献求助10
1分钟前
薛定谔的柯基完成签到,获得积分10
1分钟前
1分钟前
朱文韬发布了新的文献求助10
1分钟前
王伟应助友好听云采纳,获得10
1分钟前
旭日发布了新的文献求助10
1分钟前
dyyisash完成签到 ,获得积分10
1分钟前
行则将至完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513220
关于积分的说明 11166815
捐赠科研通 3248470
什么是DOI,文献DOI怎么找? 1794249
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629