Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments

杂草 作物 卷积神经网络 杂草防治 计算机科学 农学 人工智能 生物
作者
Bishwa B. Sapkota,Changjian Hu,Muthukumar Bagavathiannan
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13 被引量:12
标识
DOI:10.3389/fpls.2022.837726
摘要

Convolutional neural networks (CNNs) have revolutionized the weed detection process with tremendous improvements in precision and accuracy. However, training these models is time-consuming and computationally demanding; thus, training weed detection models for every crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed detection model trained for a specific crop may perform in other crops. In this study, a CNN model was trained to detect morningglories and grasses in cotton. Assessments were made to gauge the potential of the very model in detecting the same weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting at weed species level). In addition, the main cotton dataset was supplemented with different amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test datasets under both schemes (Average Precision-AP: 0.83–0.88 and Mean Average Precision-mAP: 0.65–0.79). The same models performed differently over other crops under both frameworks (AP: 0.33–0.83 and mAP: 0.40–0.85). In particular, relatively higher accuracies were observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant improvements in cross-crop applicability were further observed when additional corn and soybean images were added to the model training. These findings provide valuable insights into improving global applicability of weed detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jolene66发布了新的文献求助10
刚刚
zy完成签到,获得积分10
刚刚
Adzuki0812完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
Anne应助哇哈哈采纳,获得10
2秒前
四季刻歌完成签到,获得积分10
2秒前
忆点儿孤狼完成签到,获得积分10
2秒前
搜集达人应助高贵的迎蕾采纳,获得10
2秒前
华仔应助一平采纳,获得10
3秒前
汉堡包应助bluer采纳,获得10
3秒前
3秒前
3秒前
直率心锁完成签到,获得积分10
3秒前
4秒前
李若水完成签到,获得积分10
4秒前
默默水之发布了新的文献求助10
4秒前
zink发布了新的文献求助10
5秒前
6秒前
映寒完成签到,获得积分10
6秒前
JamesPei应助幸福胡萝卜采纳,获得10
7秒前
7秒前
7秒前
Never stall完成签到,获得积分10
8秒前
鱼啦啦完成签到,获得积分10
8秒前
8秒前
猫了个喵完成签到,获得积分10
9秒前
冷静的嫣然完成签到 ,获得积分10
9秒前
9秒前
小值钱完成签到,获得积分10
10秒前
研友_nPPERn发布了新的文献求助10
11秒前
我要瘦发布了新的文献求助10
11秒前
solobang发布了新的文献求助10
11秒前
Sean发布了新的文献求助10
11秒前
Harry完成签到,获得积分10
12秒前
yxy999完成签到,获得积分10
12秒前
年华发布了新的文献求助10
12秒前
WZH123456完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678