An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network

计算机科学 模式识别(心理学) 人工智能 融合 特征(语言学) 比例(比率) 图层(电子) 计算机视觉 材料科学 物理 语言学 哲学 量子力学 复合材料
作者
Zhong Qu,Le-yuan Gao,Shengye Wang,Haonan Yin,Tuming Yi
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:125: 104518-104518 被引量:9
标识
DOI:10.1016/j.imavis.2022.104518
摘要

SSD and YOLOv5 are the one-stage object detector representative algorithms. An improved one-stage object detector based on the YOLOv5 method is proposed in this paper, named Multi-scale Feature Cross-layer Fusion Network (M-FCFN). Firstly, we extract shallow features and deep features from the PANet structure for cross-layer fusion and obtain a feature scale different from 80 × 80, 40 × 40, and 20 × 20 as output. Then, according to the single shot multi-box detector, we propose the different scale features which are obtained by cross-layer fusion for dimension reduction and use it as another output for prediction. Therefore, two completely different feature scales are added as the output. Features of different scales are necessary for detecting objects of different sizes, which can increase the probability of object detection and significantly improve detection accuracy. Finally, aiming at the Autoanchor mechanism proposed by YOLOv5, we propose an EIOU k-means calculation. We have compared the four model structures of S , M , L , and X of YOLOv5 respectively. The problem of missed and false detections for large objects is improved which has better detection results. The experimental results show that our methods achieve 89.1% and 67.8% mAP @0.5 on the PASCAL VOC and MS COCO datasets. Compared with the YOLOv5_S, our methods improve by 4.4% and 1.4% mAP @ [0.5:0.95] on the PASCAL VOC and MS COCO datasets. Compared with the four models of YOLOv5, our methods have better detection accuracy for large objects. It should be more attention that our method on the large-scale mAP @ [0.5:0.95] is 5.4% higher than YOLOv5_S on the MS COCO datasets. • We proposed Multi-scale Feature Cross-layer Fusion Network (M-FCFN). • Two completely different feature scales are added as the output. • We propose an EIOU k-means Autoanchor calculation. • The problem of missed and false detections for large objects is improved. • Our method on the large-scale mAP @[0.5:0.95] is 5.4% higher than YOLOv5_S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的小玉完成签到,获得积分10
1秒前
斯文败类应助111采纳,获得10
1秒前
ty完成签到,获得积分10
2秒前
Original完成签到,获得积分10
2秒前
3秒前
3秒前
无限曼易发布了新的文献求助20
3秒前
顾矜应助哈哈哈采纳,获得10
5秒前
daisies完成签到,获得积分10
6秒前
SciGPT应助再睡亿分钟采纳,获得10
8秒前
英俊的鱼完成签到,获得积分10
9秒前
奥拉夫完成签到,获得积分10
9秒前
完美世界应助owlhealth采纳,获得10
10秒前
jiajiajiamin发布了新的文献求助10
11秒前
十一发布了新的文献求助10
11秒前
bkagyin应助辛涩采纳,获得10
11秒前
哈哈哈完成签到,获得积分10
12秒前
ldzjiao完成签到 ,获得积分10
15秒前
15秒前
jovrtic发布了新的文献求助10
16秒前
充电宝应助star采纳,获得10
17秒前
dilli完成签到 ,获得积分10
18秒前
18秒前
18秒前
道松先生完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
念清宸完成签到 ,获得积分10
22秒前
淳于惜雪完成签到,获得积分10
24秒前
黑釉龙鲤完成签到,获得积分10
24秒前
John发布了新的文献求助10
25秒前
大模型应助owlhealth采纳,获得10
25秒前
26秒前
Mess完成签到,获得积分10
26秒前
26秒前
26秒前
zhangscience发布了新的文献求助10
26秒前
花痴的手套完成签到 ,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210