An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network

计算机科学 模式识别(心理学) 人工智能 融合 特征(语言学) 比例(比率) 图层(电子) 计算机视觉 材料科学 物理 语言学 哲学 量子力学 复合材料
作者
Zhong Qu,Le-yuan Gao,Shengye Wang,Haonan Yin,Tuming Yi
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:125: 104518-104518 被引量:9
标识
DOI:10.1016/j.imavis.2022.104518
摘要

SSD and YOLOv5 are the one-stage object detector representative algorithms. An improved one-stage object detector based on the YOLOv5 method is proposed in this paper, named Multi-scale Feature Cross-layer Fusion Network (M-FCFN). Firstly, we extract shallow features and deep features from the PANet structure for cross-layer fusion and obtain a feature scale different from 80 × 80, 40 × 40, and 20 × 20 as output. Then, according to the single shot multi-box detector, we propose the different scale features which are obtained by cross-layer fusion for dimension reduction and use it as another output for prediction. Therefore, two completely different feature scales are added as the output. Features of different scales are necessary for detecting objects of different sizes, which can increase the probability of object detection and significantly improve detection accuracy. Finally, aiming at the Autoanchor mechanism proposed by YOLOv5, we propose an EIOU k-means calculation. We have compared the four model structures of S , M , L , and X of YOLOv5 respectively. The problem of missed and false detections for large objects is improved which has better detection results. The experimental results show that our methods achieve 89.1% and 67.8% mAP @0.5 on the PASCAL VOC and MS COCO datasets. Compared with the YOLOv5_S, our methods improve by 4.4% and 1.4% mAP @ [0.5:0.95] on the PASCAL VOC and MS COCO datasets. Compared with the four models of YOLOv5, our methods have better detection accuracy for large objects. It should be more attention that our method on the large-scale mAP @ [0.5:0.95] is 5.4% higher than YOLOv5_S on the MS COCO datasets. • We proposed Multi-scale Feature Cross-layer Fusion Network (M-FCFN). • Two completely different feature scales are added as the output. • We propose an EIOU k-means Autoanchor calculation. • The problem of missed and false detections for large objects is improved. • Our method on the large-scale mAP @[0.5:0.95] is 5.4% higher than YOLOv5_S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泯恩仇完成签到,获得积分10
刚刚
董博宇完成签到,获得积分10
1秒前
1秒前
卫踏歌完成签到,获得积分10
2秒前
称心采枫完成签到 ,获得积分0
2秒前
hkh发布了新的文献求助10
2秒前
2秒前
2秒前
lmj717完成签到,获得积分10
2秒前
夏天呀完成签到,获得积分10
3秒前
想喝冰美完成签到,获得积分10
3秒前
谁在说话发布了新的文献求助20
3秒前
langbuyu完成签到,获得积分10
3秒前
3秒前
lin完成签到,获得积分10
4秒前
二哈发布了新的文献求助10
4秒前
古卡可可完成签到,获得积分10
4秒前
doin发布了新的文献求助10
5秒前
杀殿完成签到 ,获得积分10
5秒前
believe完成签到,获得积分10
6秒前
路路完成签到,获得积分10
6秒前
lan完成签到,获得积分10
6秒前
Ava应助小超人采纳,获得10
6秒前
ning发布了新的文献求助10
7秒前
Hightowerliu18完成签到,获得积分0
7秒前
PPP完成签到,获得积分10
7秒前
Sun发布了新的文献求助10
8秒前
Carrie完成签到,获得积分10
8秒前
何晨光下凡完成签到,获得积分10
8秒前
nature完成签到 ,获得积分10
8秒前
lgold完成签到,获得积分10
8秒前
英姑应助cqy采纳,获得10
9秒前
科研_小白应助耍酷的梦桃采纳,获得50
9秒前
甜美三娘完成签到,获得积分10
9秒前
声声慢3完成签到,获得积分10
9秒前
爱哭的小女孩完成签到,获得积分10
10秒前
Liu完成签到 ,获得积分10
10秒前
刘可以完成签到,获得积分10
11秒前
yy完成签到,获得积分10
11秒前
hkh发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044