An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network

计算机科学 模式识别(心理学) 人工智能 融合 特征(语言学) 比例(比率) 图层(电子) 计算机视觉 材料科学 物理 语言学 哲学 量子力学 复合材料
作者
Zhong Qu,Le-yuan Gao,Shengye Wang,Haonan Yin,Tuming Yi
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:125: 104518-104518 被引量:9
标识
DOI:10.1016/j.imavis.2022.104518
摘要

SSD and YOLOv5 are the one-stage object detector representative algorithms. An improved one-stage object detector based on the YOLOv5 method is proposed in this paper, named Multi-scale Feature Cross-layer Fusion Network (M-FCFN). Firstly, we extract shallow features and deep features from the PANet structure for cross-layer fusion and obtain a feature scale different from 80 × 80, 40 × 40, and 20 × 20 as output. Then, according to the single shot multi-box detector, we propose the different scale features which are obtained by cross-layer fusion for dimension reduction and use it as another output for prediction. Therefore, two completely different feature scales are added as the output. Features of different scales are necessary for detecting objects of different sizes, which can increase the probability of object detection and significantly improve detection accuracy. Finally, aiming at the Autoanchor mechanism proposed by YOLOv5, we propose an EIOU k-means calculation. We have compared the four model structures of S , M , L , and X of YOLOv5 respectively. The problem of missed and false detections for large objects is improved which has better detection results. The experimental results show that our methods achieve 89.1% and 67.8% mAP @0.5 on the PASCAL VOC and MS COCO datasets. Compared with the YOLOv5_S, our methods improve by 4.4% and 1.4% mAP @ [0.5:0.95] on the PASCAL VOC and MS COCO datasets. Compared with the four models of YOLOv5, our methods have better detection accuracy for large objects. It should be more attention that our method on the large-scale mAP @ [0.5:0.95] is 5.4% higher than YOLOv5_S on the MS COCO datasets. • We proposed Multi-scale Feature Cross-layer Fusion Network (M-FCFN). • Two completely different feature scales are added as the output. • We propose an EIOU k-means Autoanchor calculation. • The problem of missed and false detections for large objects is improved. • Our method on the large-scale mAP @[0.5:0.95] is 5.4% higher than YOLOv5_S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
2秒前
3秒前
葶儿发布了新的文献求助10
3秒前
hgcyp完成签到,获得积分10
8秒前
ysh完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
wang完成签到,获得积分10
12秒前
Jzhang应助Yimim采纳,获得10
13秒前
沐风发布了新的文献求助20
14秒前
汉关发布了新的文献求助10
16秒前
16秒前
葶儿完成签到,获得积分10
16秒前
安详中蓝完成签到 ,获得积分10
17秒前
呆萌士晋发布了新的文献求助10
17秒前
17秒前
19秒前
呆头发布了新的文献求助10
21秒前
若水发布了新的文献求助200
22秒前
22秒前
23秒前
子川发布了新的文献求助10
23秒前
大头娃娃没下巴完成签到,获得积分10
25秒前
liyuchen完成签到,获得积分10
25秒前
CipherSage应助Lxxx_7采纳,获得10
26秒前
烟花应助永远少年采纳,获得10
26秒前
meng发布了新的文献求助10
28秒前
科研通AI5应助贪吃的猴子采纳,获得10
30秒前
30秒前
可爱的彩虹完成签到,获得积分10
30秒前
小确幸完成签到,获得积分10
30秒前
彭于晏应助毛毛虫采纳,获得10
31秒前
LilyChen完成签到 ,获得积分10
31秒前
Owen应助Su采纳,获得10
31秒前
31秒前
31秒前
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824