已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network

计算机科学 模式识别(心理学) 人工智能 融合 特征(语言学) 比例(比率) 图层(电子) 计算机视觉 材料科学 物理 语言学 量子力学 哲学 复合材料
作者
Zhong Qu,Le-yuan Gao,Shengye Wang,Haonan Yin,Tuming Yi
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:125: 104518-104518 被引量:9
标识
DOI:10.1016/j.imavis.2022.104518
摘要

SSD and YOLOv5 are the one-stage object detector representative algorithms. An improved one-stage object detector based on the YOLOv5 method is proposed in this paper, named Multi-scale Feature Cross-layer Fusion Network (M-FCFN). Firstly, we extract shallow features and deep features from the PANet structure for cross-layer fusion and obtain a feature scale different from 80 × 80, 40 × 40, and 20 × 20 as output. Then, according to the single shot multi-box detector, we propose the different scale features which are obtained by cross-layer fusion for dimension reduction and use it as another output for prediction. Therefore, two completely different feature scales are added as the output. Features of different scales are necessary for detecting objects of different sizes, which can increase the probability of object detection and significantly improve detection accuracy. Finally, aiming at the Autoanchor mechanism proposed by YOLOv5, we propose an EIOU k-means calculation. We have compared the four model structures of S , M , L , and X of YOLOv5 respectively. The problem of missed and false detections for large objects is improved which has better detection results. The experimental results show that our methods achieve 89.1% and 67.8% mAP @0.5 on the PASCAL VOC and MS COCO datasets. Compared with the YOLOv5_S, our methods improve by 4.4% and 1.4% mAP @ [0.5:0.95] on the PASCAL VOC and MS COCO datasets. Compared with the four models of YOLOv5, our methods have better detection accuracy for large objects. It should be more attention that our method on the large-scale mAP @ [0.5:0.95] is 5.4% higher than YOLOv5_S on the MS COCO datasets. • We proposed Multi-scale Feature Cross-layer Fusion Network (M-FCFN). • Two completely different feature scales are added as the output. • We propose an EIOU k-means Autoanchor calculation. • The problem of missed and false detections for large objects is improved. • Our method on the large-scale mAP @[0.5:0.95] is 5.4% higher than YOLOv5_S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myg123完成签到 ,获得积分10
刚刚
自信夜春发布了新的文献求助10
刚刚
科研皇完成签到,获得积分10
5秒前
美好善斓完成签到 ,获得积分10
5秒前
冷静的访天完成签到 ,获得积分10
5秒前
自信夜春完成签到,获得积分10
6秒前
6秒前
刘瀚臻发布了新的文献求助20
7秒前
洛城完成签到,获得积分10
7秒前
晚意完成签到 ,获得积分10
8秒前
温馨家园完成签到 ,获得积分10
8秒前
hhhhh完成签到 ,获得积分10
9秒前
10秒前
南瓜小笨111111完成签到 ,获得积分10
10秒前
月冷完成签到 ,获得积分10
12秒前
huahua完成签到,获得积分10
12秒前
斯文败类应助bzy采纳,获得10
13秒前
13秒前
13秒前
wang1030完成签到 ,获得积分10
14秒前
讲故事发布了新的文献求助10
14秒前
小小佳作发布了新的文献求助150
15秒前
zyz发布了新的文献求助10
16秒前
zb发布了新的文献求助10
16秒前
徐铭完成签到,获得积分10
16秒前
大气幻丝完成签到,获得积分10
17秒前
llyn发布了新的文献求助10
17秒前
小L发布了新的文献求助10
18秒前
hhhh完成签到 ,获得积分10
18秒前
明亮的小蘑菇完成签到 ,获得积分10
19秒前
小二郎应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
Koalas应助刘瀚臻采纳,获得20
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
cy0824完成签到 ,获得积分10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得30
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493