An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network

计算机科学 模式识别(心理学) 人工智能 融合 特征(语言学) 比例(比率) 图层(电子) 计算机视觉 材料科学 物理 语言学 哲学 量子力学 复合材料
作者
Zhong Qu,Le-yuan Gao,Shengye Wang,Haonan Yin,Tuming Yi
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:125: 104518-104518 被引量:9
标识
DOI:10.1016/j.imavis.2022.104518
摘要

SSD and YOLOv5 are the one-stage object detector representative algorithms. An improved one-stage object detector based on the YOLOv5 method is proposed in this paper, named Multi-scale Feature Cross-layer Fusion Network (M-FCFN). Firstly, we extract shallow features and deep features from the PANet structure for cross-layer fusion and obtain a feature scale different from 80 × 80, 40 × 40, and 20 × 20 as output. Then, according to the single shot multi-box detector, we propose the different scale features which are obtained by cross-layer fusion for dimension reduction and use it as another output for prediction. Therefore, two completely different feature scales are added as the output. Features of different scales are necessary for detecting objects of different sizes, which can increase the probability of object detection and significantly improve detection accuracy. Finally, aiming at the Autoanchor mechanism proposed by YOLOv5, we propose an EIOU k-means calculation. We have compared the four model structures of S , M , L , and X of YOLOv5 respectively. The problem of missed and false detections for large objects is improved which has better detection results. The experimental results show that our methods achieve 89.1% and 67.8% mAP @0.5 on the PASCAL VOC and MS COCO datasets. Compared with the YOLOv5_S, our methods improve by 4.4% and 1.4% mAP @ [0.5:0.95] on the PASCAL VOC and MS COCO datasets. Compared with the four models of YOLOv5, our methods have better detection accuracy for large objects. It should be more attention that our method on the large-scale mAP @ [0.5:0.95] is 5.4% higher than YOLOv5_S on the MS COCO datasets. • We proposed Multi-scale Feature Cross-layer Fusion Network (M-FCFN). • Two completely different feature scales are added as the output. • We propose an EIOU k-means Autoanchor calculation. • The problem of missed and false detections for large objects is improved. • Our method on the large-scale mAP @[0.5:0.95] is 5.4% higher than YOLOv5_S.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13675329716完成签到,获得积分10
刚刚
echo发布了新的文献求助10
1秒前
cnulee完成签到,获得积分10
1秒前
CipherSage应助我的采纳,获得10
1秒前
854fycchjh完成签到,获得积分10
1秒前
流星雨完成签到,获得积分10
1秒前
星辰大海应助牙牙采纳,获得10
1秒前
高尚发布了新的文献求助10
1秒前
FF发布了新的文献求助10
1秒前
1101592875发布了新的文献求助10
2秒前
刘指导发布了新的文献求助10
2秒前
feiyuzhang发布了新的文献求助10
2秒前
3秒前
DK完成签到,获得积分10
3秒前
3秒前
东方楚才完成签到,获得积分10
3秒前
lw发布了新的文献求助10
3秒前
TaoTao发布了新的文献求助10
4秒前
乐乐应助lily采纳,获得10
5秒前
mukji发布了新的文献求助10
5秒前
深情安青应助Lily采纳,获得10
5秒前
000关闭了000文献求助
5秒前
mkb完成签到,获得积分10
5秒前
8秒前
8秒前
9秒前
vv发布了新的文献求助30
9秒前
高尚完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
赘婿应助aafrr采纳,获得10
11秒前
11秒前
11秒前
Mic应助HOME采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
shinhee完成签到,获得积分10
12秒前
LFG完成签到,获得积分10
13秒前
隐形路灯完成签到 ,获得积分10
13秒前
天天快乐应助Kikua采纳,获得10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927