Federated Transfer Learning for Bearing Fault Diagnosis With Discrepancy-Based Weighted Federated Averaging

计算机科学 联合学习 学习迁移 一般化 人工智能 领域(数学分析) 机器学习 骨料(复合) 断层(地质) 数据挖掘 信息隐私 训练集 算法 数学 数学分析 复合材料 地震学 地质学 互联网隐私 材料科学
作者
Junbin Chen,Jipu Li,Ruyi Huang,Ke Yue,Zhuyun Chen,Weihua Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:79
标识
DOI:10.1109/tim.2022.3180417
摘要

Generally, high performance of deep learning (DL)-based machinery fault diagnosis methods relies on abundant labeled fault samples under various working conditions, while they are usually stored by different users and not communicated with each other due to data privacy protection. Federated learning (FL) is a possible solution, but the traditional federated averaging (FedAvg) algorithm in FL ignores the potential domain shift of different FL participants, which limits its further application. Therefore, a federated transfer learning framework with discrepancy-based weighted federated averaging (D-WFA) is proposed to train the good global diagnosis model collaboratively as well as protect data privacy. First, local labeled source domain data and unlabeled target domain data are utilized to update multiple local models with generalization ability. Then, a maximum mean discrepancy (MMD)-based dynamic weighted averaging algorithm is designed to aggregate the updated local models with automatically learned weight. The proposed D-WFA overcomes the disadvantage of the traditional FedAvg algorithm which assumes all clients have the same contribution in constructing the global model during FL training. Experiment results on a bearing dataset show that the proposed D-WFA outperforms the traditional FedAvg and relative federated transfer learning method, which offers a promising solution in privacy-preserving machine learning for fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
归陌完成签到 ,获得积分10
1秒前
1秒前
斯文败类应助柔弱曼冬采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
skr完成签到,获得积分10
4秒前
4秒前
李萌萌发布了新的文献求助20
5秒前
靓丽的素发布了新的文献求助10
6秒前
奋斗完成签到 ,获得积分10
6秒前
sian发布了新的文献求助30
7秒前
8秒前
鳄鱼队长完成签到,获得积分10
8秒前
Pepsi完成签到,获得积分10
9秒前
小蘑菇应助贪狼先森采纳,获得10
9秒前
9秒前
11秒前
xdedd完成签到,获得积分10
11秒前
12秒前
15秒前
西陆完成签到,获得积分10
15秒前
满意的柏柳完成签到 ,获得积分10
15秒前
柔弱曼冬发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
小绵羊发布了新的文献求助10
17秒前
自觉紫安发布了新的文献求助10
18秒前
19秒前
大方博涛发布了新的文献求助10
19秒前
塵埃发布了新的文献求助10
19秒前
20秒前
shijin135完成签到,获得积分10
20秒前
21秒前
务实小熊猫完成签到,获得积分10
22秒前
认真的冰绿完成签到,获得积分10
22秒前
英俊的铭应助壮观梦易采纳,获得10
25秒前
汉堡包应助壮观梦易采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105