已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Autonomous calibration for gaze detection using Bayesian estimation and canonical correlation analysis

计算机科学 计算机视觉 眼动 人眼 人工智能 校准 凝视 职位(财务) 可穿戴计算机 探测器 跟踪(教育) 数学 统计 经济 嵌入式系统 财务 电信 教育学 心理学
作者
Saori Yoshida,Masaharu Yoshikawa,Suguru Sangu
标识
DOI:10.1117/12.2611929
摘要

For daily use of AR technology, the development of smart glasses which look like ordinary eyeglasses has been accelerated, and eye-tracking devices to support their video expression and natural human-machine interfaces have been attracting attention. Over the past few years, we have been developing a non-video-based eye-tracking system, that consists of a VCSEL array and a position-sensitive detector (PSD), and is implemented on small glass devices without preventing device design and their appearance. In wearable eye-tracking devices, calibration is frequently required, when misalignments of the device and the user switching occur. The most common calibration method is having the user gazes at multiple fixed points, but it interrupts user’s activities and causes stress. To eliminate the calibration stress, a novel algorithm has been proposed, that estimates the shape and position of user’s eyes from continuously detected data and corrects the gaze direction while wearing glasses. The fundamental principle of this algorithm is that such eye parameters affect spatial characteristics of detected laser beam spot on the PSD, reflected on the eye surface. The Bayesian estimation is used to updates the probability distribution of unconscious eye movements, and the eye parameters are identified with the help of the canonical correlation analysis. In this paper, the details of the gaze detection algorithm with autonomous calibration mechanism have been described, and a ray-tracing simulation has been performed for a proof of concept. The results show the applicability of our proposed algorithm to provide an eye-tracking module without any user stress of calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
Bailey发布了新的文献求助10
2秒前
Xzj发布了新的文献求助10
3秒前
3秒前
An完成签到,获得积分20
5秒前
yyh发布了新的文献求助10
8秒前
阿星完成签到,获得积分10
8秒前
温暖书文发布了新的文献求助10
8秒前
明昼完成签到,获得积分10
9秒前
三维码完成签到,获得积分10
10秒前
88C真是太神奇啦完成签到 ,获得积分10
13秒前
13秒前
善良的花菜完成签到 ,获得积分10
14秒前
14秒前
huishoushen完成签到 ,获得积分10
15秒前
科研通AI2S应助FLY采纳,获得10
17秒前
18秒前
852应助微光熠采纳,获得10
18秒前
温暖书文完成签到,获得积分10
19秒前
SciGPT应助111采纳,获得10
19秒前
YY发布了新的文献求助30
19秒前
YEM发布了新的文献求助10
19秒前
zhangwenjie完成签到 ,获得积分10
20秒前
慕青应助坚强素采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得30
21秒前
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
清秀的小刺猬应助施少雄采纳,获得10
23秒前
bai发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102