Autonomous calibration for gaze detection using Bayesian estimation and canonical correlation analysis

计算机科学 计算机视觉 眼动 人眼 人工智能 校准 凝视 职位(财务) 可穿戴计算机 探测器 跟踪(教育) 数学 统计 经济 嵌入式系统 财务 电信 教育学 心理学
作者
Saori Yoshida,Masaharu Yoshikawa,Suguru Sangu
标识
DOI:10.1117/12.2611929
摘要

For daily use of AR technology, the development of smart glasses which look like ordinary eyeglasses has been accelerated, and eye-tracking devices to support their video expression and natural human-machine interfaces have been attracting attention. Over the past few years, we have been developing a non-video-based eye-tracking system, that consists of a VCSEL array and a position-sensitive detector (PSD), and is implemented on small glass devices without preventing device design and their appearance. In wearable eye-tracking devices, calibration is frequently required, when misalignments of the device and the user switching occur. The most common calibration method is having the user gazes at multiple fixed points, but it interrupts user’s activities and causes stress. To eliminate the calibration stress, a novel algorithm has been proposed, that estimates the shape and position of user’s eyes from continuously detected data and corrects the gaze direction while wearing glasses. The fundamental principle of this algorithm is that such eye parameters affect spatial characteristics of detected laser beam spot on the PSD, reflected on the eye surface. The Bayesian estimation is used to updates the probability distribution of unconscious eye movements, and the eye parameters are identified with the help of the canonical correlation analysis. In this paper, the details of the gaze detection algorithm with autonomous calibration mechanism have been described, and a ray-tracing simulation has been performed for a proof of concept. The results show the applicability of our proposed algorithm to provide an eye-tracking module without any user stress of calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助科研通管家采纳,获得10
2秒前
qingmoheng应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
科研王应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
科研王应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
yeahCZY应助一个小胖子采纳,获得10
6秒前
慕青应助白江虎采纳,获得10
7秒前
柯友卉完成签到,获得积分10
9秒前
一个小胖子完成签到,获得积分10
21秒前
漂亮的秋天完成签到 ,获得积分10
23秒前
tu完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
30秒前
俭朴的芝麻完成签到,获得积分10
32秒前
王昭完成签到 ,获得积分10
34秒前
2316690509完成签到 ,获得积分10
34秒前
嘻嘻不嘻嘻完成签到 ,获得积分10
35秒前
cccc完成签到 ,获得积分10
39秒前
慕何完成签到 ,获得积分10
49秒前
南浔完成签到 ,获得积分10
55秒前
高高的以山完成签到 ,获得积分10
55秒前
qqqdewq完成签到,获得积分10
59秒前
高大厉完成签到 ,获得积分10
1分钟前
1分钟前
自信的高山完成签到,获得积分10
1分钟前
1分钟前
Yael发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lxt完成签到 ,获得积分10
1分钟前
1分钟前
NexusExplorer应助Yael采纳,获得10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
小熊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539156
求助须知:如何正确求助?哪些是违规求助? 4625957
关于积分的说明 14597178
捐赠科研通 4566766
什么是DOI,文献DOI怎么找? 2503614
邀请新用户注册赠送积分活动 1481546
关于科研通互助平台的介绍 1453063