Autonomous calibration for gaze detection using Bayesian estimation and canonical correlation analysis

计算机科学 计算机视觉 眼动 人眼 人工智能 校准 凝视 职位(财务) 可穿戴计算机 探测器 跟踪(教育) 数学 统计 经济 嵌入式系统 财务 电信 教育学 心理学
作者
Saori Yoshida,Masaharu Yoshikawa,Suguru Sangu
标识
DOI:10.1117/12.2611929
摘要

For daily use of AR technology, the development of smart glasses which look like ordinary eyeglasses has been accelerated, and eye-tracking devices to support their video expression and natural human-machine interfaces have been attracting attention. Over the past few years, we have been developing a non-video-based eye-tracking system, that consists of a VCSEL array and a position-sensitive detector (PSD), and is implemented on small glass devices without preventing device design and their appearance. In wearable eye-tracking devices, calibration is frequently required, when misalignments of the device and the user switching occur. The most common calibration method is having the user gazes at multiple fixed points, but it interrupts user’s activities and causes stress. To eliminate the calibration stress, a novel algorithm has been proposed, that estimates the shape and position of user’s eyes from continuously detected data and corrects the gaze direction while wearing glasses. The fundamental principle of this algorithm is that such eye parameters affect spatial characteristics of detected laser beam spot on the PSD, reflected on the eye surface. The Bayesian estimation is used to updates the probability distribution of unconscious eye movements, and the eye parameters are identified with the help of the canonical correlation analysis. In this paper, the details of the gaze detection algorithm with autonomous calibration mechanism have been described, and a ray-tracing simulation has been performed for a proof of concept. The results show the applicability of our proposed algorithm to provide an eye-tracking module without any user stress of calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
heniancheng完成签到 ,获得积分10
1秒前
1秒前
钇点点完成签到,获得积分10
1秒前
这小猪真帅完成签到,获得积分10
2秒前
欣欣向荣完成签到,获得积分10
2秒前
xunoverflow完成签到,获得积分10
2秒前
科研通AI2S应助宇哥采纳,获得10
3秒前
老头大学习完成签到 ,获得积分10
3秒前
wh完成签到,获得积分10
4秒前
4秒前
去往南极发布了新的文献求助10
5秒前
等待的剑身完成签到,获得积分10
5秒前
FashionBoy应助jin采纳,获得10
5秒前
6秒前
冯嘉淇完成签到 ,获得积分10
7秒前
7秒前
陈陈完成签到 ,获得积分10
7秒前
7秒前
hhh123完成签到,获得积分10
8秒前
宁静致远完成签到,获得积分10
13秒前
策略发布了新的文献求助10
13秒前
钇点点发布了新的文献求助10
13秒前
yushun2完成签到,获得积分10
14秒前
宋慧茹发布了新的文献求助10
14秒前
崔宏玺发布了新的文献求助10
15秒前
香蕉诗蕊应助西瓜汽水采纳,获得10
16秒前
万能图书馆应助hjc采纳,获得10
16秒前
向日葵发布了新的文献求助10
16秒前
张慧杰完成签到,获得积分10
16秒前
暴躁的嘉懿完成签到,获得积分10
17秒前
走心君发布了新的文献求助20
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
Gauss应助雪山飞龙采纳,获得30
20秒前
赵宇宙完成签到,获得积分10
21秒前
domkps完成签到 ,获得积分10
21秒前
zzbyxh完成签到,获得积分0
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418938
求助须知:如何正确求助?哪些是违规求助? 4534494
关于积分的说明 14144558
捐赠科研通 4450799
什么是DOI,文献DOI怎么找? 2441430
邀请新用户注册赠送积分活动 1433092
关于科研通互助平台的介绍 1410502