A Deep Learning Radiomics Analysis for Survival Prediction in Esophageal Cancer

无线电技术 食管癌 深度学习 人工智能 癌症 计算机科学 医学 机器学习 内科学
作者
Junxiu Wang,Jianchao Zeng,Hongwei Li,Xiaoqing Yu
出处
期刊:Journal of Healthcare Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-9 被引量:11
标识
DOI:10.1155/2022/4034404
摘要

The purpose of this study was to explore the deep learning radiomics (DLR) nomogram to predict the overall 3-year survival after chemoradiotherapy in patients with esophageal cancer. The 154 patients' data were used in this study, which was randomly split into training (116) and validation (38) data. Deep learning and handcrafted features were obtained via the preprocessing diagnostic computed tomography images. The selected features were used to construct radiomics signatures through the least absolute shrinkage and selection operator (LASSO) regression, maximizing relevance while minimizing redundancy. The DLR signature, handcrafted features' radiomics (HCR) signature, and clinical factors were incorporated to develop a DLR nomogram. The DLR nomogram was evaluated in terms of discrimination and calibration with comparison to the HCR signature-based radiomics model. The experimental results showed the outperforming discrimination ability of the proposed DLR over the HCR model in terms of Harrel's concordance index, 0.76 and 0.784, for training and validation sets, respectively. Also, the proposed DLR nomogram calibrates and classifies better than the HCR model in terms of AUC, 0.984 (vs. 0.797) and 0.942 (vs. 0.665) for training and validation sets, respectively. Furthermore, the nomogram-predicted Kaplan-Meier survival (KMS) curves differed significantly from the nonsurvival groups in the log-rank test (

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉以柳完成签到,获得积分10
2秒前
英姑应助格格巫采纳,获得10
3秒前
CipherSage应助薇薇采纳,获得10
4秒前
summer完成签到,获得积分10
4秒前
学术通zzz发布了新的文献求助10
5秒前
缥缈的寄云完成签到,获得积分10
5秒前
6秒前
7秒前
FashionBoy应助wangwenzhe采纳,获得10
8秒前
舒适乐儿完成签到 ,获得积分10
9秒前
Kim发布了新的文献求助10
10秒前
君翊发布了新的文献求助10
12秒前
擎天柱完成签到,获得积分10
12秒前
李志平完成签到,获得积分10
13秒前
13秒前
m0nesy完成签到,获得积分10
13秒前
14秒前
14秒前
动听的蛟凤应助phoebe采纳,获得50
15秒前
汉堡包应助zzz采纳,获得10
16秒前
17秒前
XY发布了新的文献求助10
17秒前
可靠嘉懿完成签到,获得积分10
17秒前
18秒前
薇薇发布了新的文献求助10
18秒前
18秒前
豫章小菜花完成签到,获得积分20
18秒前
19秒前
19秒前
19秒前
19秒前
朴实山兰完成签到,获得积分10
20秒前
20秒前
22秒前
陆拾壹发布了新的文献求助10
23秒前
23秒前
wangwenzhe发布了新的文献求助10
24秒前
24秒前
zz发布了新的文献求助10
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928