无线电技术
食管癌
深度学习
人工智能
癌症
计算机科学
医学
机器学习
内科学
作者
Junxiu Wang,Jianchao Zeng,Hongwei Li,Xiaoqing Yu
摘要
The purpose of this study was to explore the deep learning radiomics (DLR) nomogram to predict the overall 3-year survival after chemoradiotherapy in patients with esophageal cancer. The 154 patients' data were used in this study, which was randomly split into training (116) and validation (38) data. Deep learning and handcrafted features were obtained via the preprocessing diagnostic computed tomography images. The selected features were used to construct radiomics signatures through the least absolute shrinkage and selection operator (LASSO) regression, maximizing relevance while minimizing redundancy. The DLR signature, handcrafted features' radiomics (HCR) signature, and clinical factors were incorporated to develop a DLR nomogram. The DLR nomogram was evaluated in terms of discrimination and calibration with comparison to the HCR signature-based radiomics model. The experimental results showed the outperforming discrimination ability of the proposed DLR over the HCR model in terms of Harrel's concordance index, 0.76 and 0.784, for training and validation sets, respectively. Also, the proposed DLR nomogram calibrates and classifies better than the HCR model in terms of AUC, 0.984 (vs. 0.797) and 0.942 (vs. 0.665) for training and validation sets, respectively. Furthermore, the nomogram-predicted Kaplan-Meier survival (KMS) curves differed significantly from the nonsurvival groups in the log-rank test (
科研通智能强力驱动
Strongly Powered by AbleSci AI