Prediction of the interaction strength of an urea‐based probe toward ions in water by means of Density Functional Theory/Polarizable Continuum Model calculations

溶剂化 化学 极化连续介质模型 密度泛函理论 极化率 离子 计算化学 背景(考古学) 基准集 结合能 氢键 水溶液 分子 化学物理 物理化学 原子物理学 物理 有机化学 古生物学 生物
作者
Robert Benda,Thomas Vezin,Bérengère Lebental
出处
期刊:International Journal of Quantum Chemistry [Wiley]
卷期号:122 (12) 被引量:4
标识
DOI:10.1002/qua.26901
摘要

Abstract We study numerically, by means of density functional theory (DFT) calculations complemented with an implicit solvation model, a novel chemical probe bearing urea and aromatic phenyl groups. We probe the interaction in water of the latter with a wide variety of ions relevant to water quality. We perform geometry minimizations using PBE0 functional and aug‐cc‐pVDZ basis set, and a polarizable continuum model (PCM) to take into account the aqueous solvent. We underline for the first time several methodological details concerning the definition of the binding or interaction energy, and the basis set superposition error definition in the context of implicit solvation models. We observe two competing interaction modes for this probe: a urea‐enhanced, cation‐ π interaction (with cations only), and hydrogen bonding occurring between the urea group and anions, the former being more favorable than the latter. A Generalized Kohn–Sham Energy Decomposition Analysis (GKS‐EDA) in implicit solvent is performed to analyze the nature of the ions–probe interactions. Magnesium and sodium ions, and respectively glyphosate and hypochlorite ions, are found as the cations (resp. anions) having the largest binding free energies with the probe. This is the first time such an exhaustive study, investigating the selectivity of an organic probe toward a wide variety of ions in water, is carried out in the context of DFT/PCM models. Computer‐aided sensor design needs reliable and efficient methods. Our methodology can be used as a general way to gain a valuable insight into the sensitivity of organic ligands toward a variety of ions or pesticides in water, without the need of an explicit solvent description, but still going beyond the state‐of‐the‐art DFT in vacuo approach. By predicting possible competitive interactions, and understanding their nature, this methodology can thus help to better design functional groups selective to specific targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangsuyun发布了新的文献求助10
刚刚
SYLH应助lx采纳,获得10
刚刚
anan_0528完成签到 ,获得积分10
刚刚
晓军发布了新的文献求助10
刚刚
李双艳发布了新的文献求助10
刚刚
wddddd完成签到,获得积分10
1秒前
1秒前
1秒前
感动的世平完成签到,获得积分10
3秒前
可爱的函函应助一一采纳,获得10
3秒前
3秒前
zhu完成签到,获得积分10
4秒前
俏皮的龙猫完成签到 ,获得积分10
4秒前
4秒前
SciGPT应助认真的一刀采纳,获得10
4秒前
5秒前
5秒前
甲基正离子完成签到,获得积分10
6秒前
hzl完成签到,获得积分10
6秒前
Lam完成签到,获得积分10
6秒前
大白发布了新的文献求助10
6秒前
6秒前
李爱国应助Hu采纳,获得10
7秒前
7秒前
小欧医生完成签到,获得积分10
7秒前
8秒前
8秒前
老肥完成签到,获得积分10
9秒前
易安发布了新的文献求助10
9秒前
洋洋洋完成签到,获得积分10
9秒前
9秒前
冷傲迎梦发布了新的文献求助10
10秒前
10秒前
Agernon应助晓军采纳,获得10
10秒前
小夭发布了新的文献求助10
11秒前
无聊的翠芙完成签到,获得积分10
11秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678