Radiomics in precision medicine for gastric cancer: opportunities and challenges

无线电技术 医学 医学物理学 神经组阅片室 梅德林 放射科 神经学 政治学 精神科 法学
作者
Justin Chen,Lu Zhang,Shuyi Liu,Jungmok You,Luyan Chen,Zhe Jin,Shuixing Zhang,Bin Zhang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (9): 5852-5868 被引量:42
标识
DOI:10.1007/s00330-022-08704-8
摘要

Radiomic features derived from routine medical images show great potential for personalized medicine in gastric cancer (GC). We aimed to evaluate the current status and quality of radiomic research as well as its potential for identifying biomarkers to predict therapy response and prognosis in patients with GC.We performed a systematic search of the PubMed and Embase databases for articles published from inception through July 10, 2021. The phase classification criteria for image mining studies and the radiomics quality scoring (RQS) tool were applied to evaluate scientific and reporting quality.Twenty-five studies consisting of 10,432 patients were included. 96% of studies extracted radiomic features from CT images. Association between radiomic signature and therapy response was evaluated in seven (28%) studies; association with survival was evaluated in 17 (68%) studies; one (4%) study analyzed both. All results of the included studies showed significant associations. Based on the phase classification criteria for image mining studies, 18 (72%) studies were classified as phase II, with two, four, and one studies as discovery science, phase 0 and phase I, respectively. The median RQS score for the radiomic studies was 44.4% (range, 0 to 55.6%). There was extensive heterogeneity in the study population, tumor stage, treatment protocol, and radiomic workflow amongst the studies.Although radiomic research in GC is highly heterogeneous and of relatively low quality, it holds promise for predicting therapy response and prognosis. Efforts towards standardization and collaboration are needed to utilize radiomics for clinical application.• Radiomics application of gastric cancer is increasingly being reported, particularly in predicting therapy response and survival. • Although radiomics research in gastric cancer is highly heterogeneous and relatively low quality, it holds promise for predicting clinical outcomes. • Standardized imaging protocols and radiomic workflow are needed to facilitate radiomics into clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助PROPELLER采纳,获得30
刚刚
海上生明月完成签到 ,获得积分10
1秒前
daidai123发布了新的文献求助10
1秒前
默幻弦发布了新的文献求助10
2秒前
小李新人完成签到 ,获得积分10
3秒前
3秒前
优雅雁菱完成签到,获得积分10
3秒前
昕昕发布了新的文献求助10
3秒前
4秒前
零时蝶完成签到,获得积分10
4秒前
网友小于发布了新的文献求助10
6秒前
所所应助lee1984612采纳,获得10
6秒前
distinguish发布了新的文献求助10
6秒前
汀烟应助xusanguan采纳,获得10
7秒前
7秒前
8秒前
三伏天完成签到,获得积分10
9秒前
9秒前
lllllyixi关注了科研通微信公众号
9秒前
12秒前
539完成签到,获得积分10
12秒前
含蓄飞槐发布了新的文献求助10
13秒前
xiaohaonumber2完成签到 ,获得积分10
13秒前
zz发布了新的文献求助10
13秒前
披萨红完成签到,获得积分10
14秒前
聪明小虾米完成签到,获得积分10
14秒前
李爱国应助现实的飞飞采纳,获得10
14秒前
15秒前
16秒前
默幻弦完成签到,获得积分10
16秒前
lzl完成签到,获得积分10
17秒前
茶暖桉呀完成签到,获得积分10
18秒前
SYX完成签到 ,获得积分10
18秒前
WalkToSky完成签到,获得积分10
20秒前
20秒前
zz完成签到,获得积分20
20秒前
赘婿应助皓轩采纳,获得10
22秒前
K先生完成签到,获得积分10
22秒前
小马甲应助大恒采纳,获得10
23秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216362
求助须知:如何正确求助?哪些是违规求助? 2865415
关于积分的说明 8147781
捐赠科研通 2531895
什么是DOI,文献DOI怎么找? 1365500
科研通“疑难数据库(出版商)”最低求助积分说明 644483
邀请新用户注册赠送积分活动 617335