phenofit: An R package for extracting vegetation phenology from time series remote sensing

物候学 遥感 植被(病理学) 时间序列 归一化差异植被指数 卫星 增强植被指数 计算机科学 地理 气候变化 环境科学 气象学 生态学 机器学习 医学 植被指数 病理 航空航天工程 工程类 生物
作者
Dongdong Kong,Tim R. McVicar,Mingzhong Xiao,Yongqiang Zhang,Jorge L. Peña‐Arancibia,Gianluca Filippa,Yuxuan Xie,Xihui Gu
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:13 (7): 1508-1527 被引量:63
标识
DOI:10.1111/2041-210x.13870
摘要

Abstract Satellite‐derived vegetation indices (VIs) provide a way to analyse vegetation phenology over decades globally. However, these data are often contaminated by different kinds of optical noise (e.g. cloud, cloud shadow, snow, aerosol), making accurate phenology extraction challenging. We present an open‐source state‐of‐the‐art R package called to extract vegetation phenological information from satellite‐derived VIs. adopts state‐of‐the‐art phenology extraction methods, such as a weight updating function for reducing optical noise contamination, a growing season division function for separating the VI time series into different vegetation cycles, and rough and fine fitting functions for reconstructing VI time series. They work together to make phenology extraction from frequently contaminated VIs easier and more accurate. Compared against other widely used phenology extraction tools, for example, and , provides flexible input and output options, a practical growing season division function, rich curve fitting and phenology extraction functions, and robust performance under different kinds of optical noise. In addition to working with VIs from mesoscale satellites (e.g. MODIS and AVHRR), can also reconstruct vegetation time series and extract phenology using other sources, such as VIs from high‐resolution optical satellites (e.g. Sentinel‐2 and Landsat) and radar satellites (e.g. Sentinel‐1), vegetation greenness indices from digital cameras and gross primary production estimations from eddy‐covariance sites. As such, can contribute to the study of ecological process dynamics and assist in effective modelling of global change impacts on vegetation, as caused by climate variability and human intervention. Code and data of case studies are available at https://zenodo.org/record/6425745 (Kong, 2022a).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
纪间发布了新的文献求助10
1秒前
syx完成签到,获得积分10
1秒前
王丽娟完成签到,获得积分10
1秒前
2秒前
善学以致用应助aimad采纳,获得10
2秒前
2秒前
galioo3000发布了新的文献求助10
3秒前
百甲完成签到,获得积分10
3秒前
cathylll完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
4秒前
清秀语梦完成签到,获得积分10
4秒前
zyp1229完成签到,获得积分10
4秒前
Liu发布了新的文献求助10
5秒前
5秒前
5秒前
无花果应助struggling2026采纳,获得10
6秒前
6秒前
耕牛热发布了新的文献求助10
6秒前
6秒前
背后白梦发布了新的文献求助80
6秒前
鱼刺鱼刺卡完成签到,获得积分10
6秒前
星星完成签到,获得积分10
6秒前
chenshi0515完成签到 ,获得积分10
7秒前
7秒前
田攀发布了新的文献求助10
8秒前
8秒前
coolman冰人完成签到,获得积分20
8秒前
8秒前
华仔应助徐志豪采纳,获得10
9秒前
什么也难不倒我完成签到 ,获得积分10
9秒前
千里发布了新的文献求助10
9秒前
俊、、完成签到,获得积分10
10秒前
11秒前
11秒前
清秀语梦发布了新的文献求助10
11秒前
传奇3应助冲冲冲采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285