phenofit: An R package for extracting vegetation phenology from time series remote sensing

物候学 遥感 植被(病理学) 时间序列 归一化差异植被指数 卫星 增强植被指数 计算机科学 地理 气候变化 环境科学 气象学 生态学 机器学习 航空航天工程 病理 工程类 生物 医学 植被指数
作者
Dongdong Kong,Tim R. McVicar,Mingzhong Xiao,Yongqiang Zhang,Jorge L. Peña‐Arancibia,Gianluca Filippa,Yuxuan Xie,Xihui Gu
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:13 (7): 1508-1527 被引量:63
标识
DOI:10.1111/2041-210x.13870
摘要

Abstract Satellite‐derived vegetation indices (VIs) provide a way to analyse vegetation phenology over decades globally. However, these data are often contaminated by different kinds of optical noise (e.g. cloud, cloud shadow, snow, aerosol), making accurate phenology extraction challenging. We present an open‐source state‐of‐the‐art R package called to extract vegetation phenological information from satellite‐derived VIs. adopts state‐of‐the‐art phenology extraction methods, such as a weight updating function for reducing optical noise contamination, a growing season division function for separating the VI time series into different vegetation cycles, and rough and fine fitting functions for reconstructing VI time series. They work together to make phenology extraction from frequently contaminated VIs easier and more accurate. Compared against other widely used phenology extraction tools, for example, and , provides flexible input and output options, a practical growing season division function, rich curve fitting and phenology extraction functions, and robust performance under different kinds of optical noise. In addition to working with VIs from mesoscale satellites (e.g. MODIS and AVHRR), can also reconstruct vegetation time series and extract phenology using other sources, such as VIs from high‐resolution optical satellites (e.g. Sentinel‐2 and Landsat) and radar satellites (e.g. Sentinel‐1), vegetation greenness indices from digital cameras and gross primary production estimations from eddy‐covariance sites. As such, can contribute to the study of ecological process dynamics and assist in effective modelling of global change impacts on vegetation, as caused by climate variability and human intervention. Code and data of case studies are available at https://zenodo.org/record/6425745 (Kong, 2022a).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓完成签到 ,获得积分10
刚刚
太叔丹翠完成签到 ,获得积分10
1秒前
abc123完成签到,获得积分10
2秒前
2秒前
cpli完成签到,获得积分10
3秒前
大白发布了新的文献求助20
3秒前
和平发展完成签到,获得积分10
4秒前
我是魔王完成签到,获得积分10
4秒前
Polymer72应助liu采纳,获得10
5秒前
滴滴滴完成签到,获得积分10
5秒前
今日不再蛇皇完成签到,获得积分10
5秒前
老甘完成签到 ,获得积分10
6秒前
7秒前
Hello应助nimama采纳,获得10
7秒前
爱静静应助简单823采纳,获得10
8秒前
阿来哈哈完成签到,获得积分20
8秒前
applooc完成签到,获得积分10
8秒前
丹丹完成签到 ,获得积分10
8秒前
liuqizong123完成签到,获得积分10
8秒前
janan33完成签到,获得积分10
9秒前
李健的小迷弟应助刘燕采纳,获得10
10秒前
RATHER完成签到,获得积分10
10秒前
11秒前
MLi应助天Q采纳,获得10
12秒前
sunshine完成签到,获得积分10
12秒前
风中的双完成签到 ,获得积分10
12秒前
goldenfleece完成签到,获得积分20
13秒前
儒雅的不愁完成签到 ,获得积分10
13秒前
wf发布了新的文献求助10
14秒前
默默的筝关注了科研通微信公众号
15秒前
cocobear完成签到 ,获得积分10
16秒前
ZH完成签到 ,获得积分10
16秒前
Liar完成签到,获得积分10
18秒前
chenman9397完成签到 ,获得积分10
18秒前
王洵完成签到,获得积分10
18秒前
wujingshuai完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
单纯的思松完成签到,获得积分10
21秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350209
求助须知:如何正确求助?哪些是违规求助? 2976006
关于积分的说明 8672509
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454863
科研通“疑难数据库(出版商)”最低求助积分说明 673534
邀请新用户注册赠送积分活动 664017