phenofit: An R package for extracting vegetation phenology from time series remote sensing

物候学 遥感 植被(病理学) 时间序列 归一化差异植被指数 卫星 增强植被指数 计算机科学 地理 气候变化 环境科学 气象学 生态学 机器学习 航空航天工程 病理 工程类 生物 医学 植被指数
作者
Dongdong Kong,Tim R. McVicar,Mingzhong Xiao,Yongqiang Zhang,Jorge L. Peña‐Arancibia,Gianluca Filippa,Yuxuan Xie,Xihui Gu
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:13 (7): 1508-1527 被引量:63
标识
DOI:10.1111/2041-210x.13870
摘要

Abstract Satellite‐derived vegetation indices (VIs) provide a way to analyse vegetation phenology over decades globally. However, these data are often contaminated by different kinds of optical noise (e.g. cloud, cloud shadow, snow, aerosol), making accurate phenology extraction challenging. We present an open‐source state‐of‐the‐art R package called to extract vegetation phenological information from satellite‐derived VIs. adopts state‐of‐the‐art phenology extraction methods, such as a weight updating function for reducing optical noise contamination, a growing season division function for separating the VI time series into different vegetation cycles, and rough and fine fitting functions for reconstructing VI time series. They work together to make phenology extraction from frequently contaminated VIs easier and more accurate. Compared against other widely used phenology extraction tools, for example, and , provides flexible input and output options, a practical growing season division function, rich curve fitting and phenology extraction functions, and robust performance under different kinds of optical noise. In addition to working with VIs from mesoscale satellites (e.g. MODIS and AVHRR), can also reconstruct vegetation time series and extract phenology using other sources, such as VIs from high‐resolution optical satellites (e.g. Sentinel‐2 and Landsat) and radar satellites (e.g. Sentinel‐1), vegetation greenness indices from digital cameras and gross primary production estimations from eddy‐covariance sites. As such, can contribute to the study of ecological process dynamics and assist in effective modelling of global change impacts on vegetation, as caused by climate variability and human intervention. Code and data of case studies are available at https://zenodo.org/record/6425745 (Kong, 2022a).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu发布了新的文献求助10
刚刚
yejiafeng完成签到,获得积分10
1秒前
1秒前
MMMMathilda23发布了新的文献求助10
1秒前
今后应助钟鸿盛Domi采纳,获得10
2秒前
Wangdx发布了新的文献求助10
3秒前
令狐天与完成签到,获得积分10
4秒前
电池博士完成签到,获得积分10
4秒前
sss312发布了新的文献求助10
4秒前
影儿完成签到,获得积分20
8秒前
MMMMathilda23完成签到,获得积分10
10秒前
10秒前
无花果应助王宇杰采纳,获得10
13秒前
13秒前
Lucas应助csj采纳,获得10
14秒前
科研通AI5应助活泼万言采纳,获得10
17秒前
wanwan应助灰底爆米花采纳,获得10
18秒前
yufeng完成签到 ,获得积分10
19秒前
太阳花发布了新的文献求助10
19秒前
wq完成签到,获得积分10
19秒前
科研通AI5应助聪明的元彤采纳,获得10
20秒前
大模型应助MMMMathilda23采纳,获得10
20秒前
21秒前
aike完成签到,获得积分10
22秒前
DavidXie应助摔跤的猫采纳,获得10
23秒前
淡淡乐巧完成签到 ,获得积分10
24秒前
闲着也是闲着完成签到,获得积分10
26秒前
Rondab应助Gtingting采纳,获得10
26秒前
Ren应助健康的雨安采纳,获得10
27秒前
LFFF999发布了新的文献求助10
27秒前
28秒前
科目三应助more采纳,获得10
28秒前
29秒前
杜兰特发布了新的文献求助10
31秒前
Gengsai发布了新的文献求助10
32秒前
32秒前
36秒前
36秒前
38秒前
六点完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644