Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (5): 918-927 被引量:27
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亥月十八完成签到,获得积分10
刚刚
hugeng完成签到,获得积分10
1秒前
hugeng发布了新的文献求助10
4秒前
5秒前
tracer完成签到,获得积分10
6秒前
畅快的蛋挞完成签到,获得积分10
6秒前
大模型应助四喜丸子采纳,获得10
6秒前
8秒前
英俊延恶完成签到,获得积分10
8秒前
luck完成签到,获得积分10
9秒前
9秒前
SMG完成签到 ,获得积分10
11秒前
12秒前
QDU应助积极的爆米花采纳,获得20
13秒前
QP34完成签到 ,获得积分10
14秒前
light完成签到 ,获得积分10
15秒前
dengqiuxiawy发布了新的文献求助10
17秒前
luck发布了新的文献求助10
17秒前
17秒前
傻傻的念瑶完成签到 ,获得积分10
20秒前
QDU应助青聪岁月采纳,获得10
20秒前
22秒前
华仔应助flkn采纳,获得10
23秒前
geather完成签到,获得积分10
26秒前
mmooo完成签到 ,获得积分10
26秒前
28秒前
爱静静应助朴实凝雁采纳,获得10
30秒前
mark33442发布了新的文献求助10
31秒前
35秒前
mhl11应助快乐小子采纳,获得10
36秒前
思源应助May采纳,获得10
36秒前
37秒前
科研小趴菜完成签到,获得积分10
39秒前
知性的钢笔完成签到,获得积分10
40秒前
40秒前
JJ完成签到,获得积分10
40秒前
flkn发布了新的文献求助10
42秒前
42秒前
123完成签到,获得积分10
42秒前
ForestEcho发布了新的文献求助10
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342189
求助须知:如何正确求助?哪些是违规求助? 2969410
关于积分的说明 8639401
捐赠科研通 2649198
什么是DOI,文献DOI怎么找? 1450607
科研通“疑难数据库(出版商)”最低求助积分说明 671949
邀请新用户注册赠送积分活动 661138