Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (5): 918-927 被引量:31
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗成风发布了新的文献求助10
1秒前
万能图书馆应助甘博采纳,获得10
1秒前
1秒前
fmy发布了新的文献求助30
2秒前
2秒前
星辰大海应助王博雅采纳,获得10
2秒前
ngg完成签到,获得积分10
3秒前
小诗发布了新的文献求助10
3秒前
3秒前
kaka完成签到,获得积分10
3秒前
天天快乐应助KK采纳,获得30
3秒前
孙佳美发布了新的文献求助10
3秒前
4秒前
善学以致用应助梨花诗采纳,获得10
4秒前
yun发布了新的文献求助10
4秒前
mncvjs发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
4秒前
5秒前
PEAR完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
锦鲤发布了新的文献求助30
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得30
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589298
求助须知:如何正确求助?哪些是违规求助? 4004485
关于积分的说明 12398008
捐赠科研通 3681414
什么是DOI,文献DOI怎么找? 2029114
邀请新用户注册赠送积分活动 1062604
科研通“疑难数据库(出版商)”最低求助积分说明 948309