已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (5): 918-927 被引量:31
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jepsen完成签到 ,获得积分10
2秒前
FYF完成签到 ,获得积分10
3秒前
自然友菱完成签到,获得积分10
10秒前
11秒前
星辰大海应助牛奶秋刀鱼采纳,获得10
14秒前
15秒前
霍华淞发布了新的文献求助10
17秒前
自由的思枫完成签到 ,获得积分10
17秒前
tian发布了新的文献求助10
19秒前
Lucas应助寒冷的海蓝采纳,获得10
22秒前
23秒前
呉冥11完成签到,获得积分20
23秒前
23秒前
小二郎应助霍华淞采纳,获得10
24秒前
醒醒完成签到,获得积分10
24秒前
可爱的函函应助Mayday采纳,获得10
26秒前
希里完成签到 ,获得积分10
28秒前
恒星的恒心完成签到 ,获得积分10
29秒前
29秒前
Album完成签到 ,获得积分10
29秒前
30秒前
momofengfeng应助tian采纳,获得10
33秒前
34秒前
JJy完成签到 ,获得积分10
36秒前
NexusExplorer应助火龙果采纳,获得10
36秒前
A001发布了新的文献求助10
38秒前
39秒前
lll完成签到 ,获得积分10
40秒前
无奈的海白完成签到,获得积分10
40秒前
敬敬完成签到,获得积分10
40秒前
jekin完成签到,获得积分10
41秒前
脑洞疼应助ZZICU采纳,获得30
42秒前
李健的小迷弟应助雷雷采纳,获得30
42秒前
禾鹤完成签到 ,获得积分10
43秒前
共享精神应助A001采纳,获得10
44秒前
大吧唧完成签到,获得积分20
44秒前
45秒前
jasonjiang完成签到 ,获得积分0
47秒前
49秒前
酷波er应助PL采纳,获得10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749