Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (5): 918-927 被引量:31
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到,获得积分10
1秒前
赘婿应助缥缈夏彤采纳,获得10
2秒前
传奇3应助backerly采纳,获得10
2秒前
似水流华完成签到 ,获得积分10
3秒前
zzz发布了新的文献求助10
4秒前
优秀剑愁完成签到 ,获得积分10
4秒前
Criminology34应助fei菲飞采纳,获得10
7秒前
congyjs完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得20
11秒前
汉堡包应助温柔海露采纳,获得10
11秒前
lianliyou应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得30
12秒前
Polaris应助科研通管家采纳,获得20
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
满意南霜完成签到 ,获得积分10
13秒前
秦月未完完成签到,获得积分10
13秒前
会魔法的老人完成签到,获得积分10
13秒前
CipherSage应助整齐晓筠采纳,获得10
13秒前
L_Zoe_D02完成签到,获得积分10
15秒前
15秒前
小许会更好完成签到,获得积分10
16秒前
沐风发布了新的文献求助20
16秒前
空白完成签到 ,获得积分10
17秒前
王博士发布了新的文献求助10
20秒前
summitekey完成签到 ,获得积分10
20秒前
奉天逍遥完成签到,获得积分10
21秒前
平淡的秋寒完成签到,获得积分10
23秒前
Maydalian完成签到,获得积分10
24秒前
淡然柚子完成签到,获得积分10
24秒前
24秒前
25秒前
Carrie发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190