Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (5): 918-927 被引量:31
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywx发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
科研通AI6应助裴秀智采纳,获得10
1秒前
2秒前
2秒前
直率雪曼发布了新的文献求助10
2秒前
2秒前
游戏玩家完成签到,获得积分10
2秒前
天真小蚂蚁完成签到,获得积分10
3秒前
NWNU简一完成签到,获得积分10
3秒前
Cchoman完成签到,获得积分10
3秒前
暖羊羊Y发布了新的文献求助10
3秒前
小九完成签到,获得积分10
3秒前
4秒前
min发布了新的文献求助10
4秒前
niniyiya发布了新的文献求助10
4秒前
高兴123发布了新的文献求助10
4秒前
痛痛痛完成签到,获得积分10
4秒前
4秒前
真不爱学习完成签到,获得积分10
4秒前
曲淳发布了新的文献求助10
5秒前
科研通AI6应助王宇采纳,获得10
5秒前
5秒前
吕志才完成签到 ,获得积分20
5秒前
5秒前
6秒前
初芷伊发布了新的文献求助10
6秒前
6秒前
优美电脑发布了新的文献求助10
7秒前
游戏玩家发布了新的文献求助10
7秒前
钟璐发布了新的文献求助10
7秒前
7秒前
精明尔曼完成签到,获得积分10
8秒前
laola完成签到,获得积分10
8秒前
qiao发布了新的文献求助10
9秒前
高挑的小蕊完成签到,获得积分10
9秒前
iNk应助斗牛的番茄采纳,获得20
9秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572