亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable Deep Reinforcement Learning: State of the Art and Challenges

可解释性 强化学习 计算机科学 人工智能 稳健性(进化) 自动化 透明度(行为) 深度学习 机器学习 工程类 计算机安全 生物化学 机械工程 基因 化学
作者
George A. Vouros
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (5): 1-39 被引量:56
标识
DOI:10.1145/3527448
摘要

Interpretability, explainability and transparency are key issues to introducing Artificial Intelligence methods in many critical domains: This is important due to ethical concerns and trust issues strongly connected to reliability, robustness, auditability and fairness, and has important consequences towards keeping the human in the loop in high levels of automation, especially in critical cases for decision making, where both (human and the machine) play important roles. While the research community has given much attention to explainability of closed (or black) prediction boxes, there are tremendous needs for explainability of closed-box methods that support agents to act autonomously in the real world. Reinforcement learning methods, and especially their deep versions, are such closed-box methods. In this article we aim to provide a review of state of the art methods for explainable deep reinforcement learning methods, taking also into account the needs of human operators - i.e., of those that take the actual and critical decisions in solving real-world problems. We provide a formal specification of the deep reinforcement learning explainability problems, and we identify the necessary components of a general explainable reinforcement learning framework. Based on these, we provide a comprehensive review of state of the art methods, categorizing them in classes according to the paradigm they follow, the interpretable models they use, and the surface representation of explanations provided. The article concludes identifying open questions and important challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Silver完成签到,获得积分10
3秒前
Omni完成签到,获得积分10
7秒前
7秒前
失眠的筝发布了新的文献求助10
11秒前
DreamMaker完成签到,获得积分10
13秒前
Vegeta完成签到 ,获得积分10
15秒前
识趣完成签到,获得积分10
19秒前
木子水告完成签到,获得积分10
22秒前
23秒前
23秒前
HR112应助VELPRO采纳,获得10
24秒前
29秒前
李健应助爆爆采纳,获得10
31秒前
meikoo发布了新的文献求助10
34秒前
35秒前
一一发布了新的文献求助10
38秒前
40秒前
高贵石头发布了新的文献求助10
43秒前
43秒前
失眠的筝完成签到,获得积分10
48秒前
Young完成签到 ,获得积分10
48秒前
Akim应助热浪午后采纳,获得10
49秒前
爆爆发布了新的文献求助10
49秒前
50秒前
852应助高贵石头采纳,获得10
50秒前
一一完成签到,获得积分10
50秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
xiaozhao发布了新的文献求助10
55秒前
万能图书馆应助努力学习采纳,获得10
55秒前
57秒前
58秒前
柳叶刀完成签到 ,获得积分0
58秒前
59秒前
热浪午后发布了新的文献求助10
1分钟前
meikoo发布了新的文献求助10
1分钟前
热浪午后完成签到,获得积分10
1分钟前
早晚完成签到 ,获得积分10
1分钟前
crazykite完成签到,获得积分10
1分钟前
冰激凌完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803