Unsupervised Anomaly Detection for Surface Defects With Dual-Siamese Network

判别式 人工智能 模式识别(心理学) 计算机科学 异常检测 特征(语言学) 背景(考古学) 特征提取 修补 异常(物理) 特征学习 迭代重建 计算机视觉 图像(数学) 哲学 语言学 物理 凝聚态物理 古生物学 生物
作者
Xian Tao,Dapeng Zhang,Wenzhi Ma,Zhanxin Hou,Zhen-feng Lu,Chandranath Adak
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7707-7717 被引量:4
标识
DOI:10.1109/tii.2022.3142326
摘要

Unsupervised anomaly detection in real industrial scenarios is challenging since the small amount of defect-free images contain limited discriminative information, and anomaly defects are unpredictable. Although nowadays image reconstruction-based methods are widely being used in various anomaly detection applications, they cannot effectively learn semantic representation, which leads to imperfect reconstruction. In this article, anomaly detection is formulated as a joint problem of feature reconstruction and inpainting in the dual-siamese framework. The proposed approach forces the network to model the feature distribution from the normal area and capture the semantic context for discriminating normal and abnormal areas. It first uses a Siamese architecture to capture discriminative features of defect-free samples and its corresponding defective samples generated by the defect random generation module. A dense feature fusion module is then employed to obtain the dense feature representation of dual input. The second Siamese network is proposed to reconstruct and inpaint the dual-dense features of the previous stage. Compared to the existing methods that mostly employ single image reconstruction, it is beneficial to simultaneously reconstruct and inpaint the information of dense discriminative features. The experimental results on the MVTec AD datasets and some major real industrial datasets demonstrate that our method achieves state-of-the-art inspection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝暮完成签到 ,获得积分10
1秒前
不停完成签到,获得积分10
1秒前
卜大大发布了新的文献求助10
1秒前
2秒前
qqwrv发布了新的文献求助10
3秒前
婷婷发布了新的文献求助10
4秒前
薄纱流发布了新的文献求助10
5秒前
研友_24789完成签到,获得积分10
5秒前
李逸群发布了新的文献求助10
5秒前
6秒前
谢尔顿完成签到,获得积分10
7秒前
Owen应助LOKL采纳,获得10
7秒前
9秒前
10秒前
kingwill应助emm采纳,获得20
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
李笑发布了新的文献求助10
14秒前
豪子发布了新的文献求助10
14秒前
接accept发布了新的文献求助10
15秒前
kehaoran完成签到,获得积分10
16秒前
li完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
婷婷完成签到,获得积分10
18秒前
Jane完成签到,获得积分20
21秒前
大舟Austin完成签到 ,获得积分10
21秒前
东山发布了新的文献求助10
21秒前
怡然行天完成签到,获得积分10
21秒前
善学以致用应助十一一采纳,获得10
21秒前
21秒前
陶1122发布了新的文献求助10
21秒前
24秒前
25秒前
飘逸的台灯完成签到,获得积分10
25秒前
传奇3应助火鸡味锅巴采纳,获得10
25秒前
anyelengxin发布了新的文献求助10
26秒前
希望天下0贩的0应助东山采纳,获得10
27秒前
曾炯发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149