Unsupervised Anomaly Detection for Surface Defects With Dual-Siamese Network

判别式 人工智能 模式识别(心理学) 计算机科学 异常检测 特征(语言学) 背景(考古学) 特征提取 修补 异常(物理) 特征学习 迭代重建 计算机视觉 图像(数学) 哲学 语言学 物理 凝聚态物理 古生物学 生物
作者
Xian Tao,Dapeng Zhang,Wenzhi Ma,Zhanxin Hou,Zhen-feng Lu,Chandranath Adak
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7707-7717 被引量:4
标识
DOI:10.1109/tii.2022.3142326
摘要

Unsupervised anomaly detection in real industrial scenarios is challenging since the small amount of defect-free images contain limited discriminative information, and anomaly defects are unpredictable. Although nowadays image reconstruction-based methods are widely being used in various anomaly detection applications, they cannot effectively learn semantic representation, which leads to imperfect reconstruction. In this article, anomaly detection is formulated as a joint problem of feature reconstruction and inpainting in the dual-siamese framework. The proposed approach forces the network to model the feature distribution from the normal area and capture the semantic context for discriminating normal and abnormal areas. It first uses a Siamese architecture to capture discriminative features of defect-free samples and its corresponding defective samples generated by the defect random generation module. A dense feature fusion module is then employed to obtain the dense feature representation of dual input. The second Siamese network is proposed to reconstruct and inpaint the dual-dense features of the previous stage. Compared to the existing methods that mostly employ single image reconstruction, it is beneficial to simultaneously reconstruct and inpaint the information of dense discriminative features. The experimental results on the MVTec AD datasets and some major real industrial datasets demonstrate that our method achieves state-of-the-art inspection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
只想发SCI发布了新的文献求助10
1秒前
2秒前
lobster完成签到 ,获得积分10
5秒前
爱笑蜻蜓发布了新的文献求助30
6秒前
小乐儿~完成签到,获得积分10
6秒前
小青椒完成签到,获得积分0
8秒前
9秒前
9秒前
领导范儿应助会幸福的采纳,获得10
9秒前
Duomo应助ZHU采纳,获得10
10秒前
lemon完成签到 ,获得积分10
12秒前
五谷不分发布了新的文献求助10
13秒前
脑洞疼应助yy采纳,获得10
14秒前
呼安完成签到,获得积分10
14秒前
西厢张生发布了新的文献求助20
14秒前
15秒前
16秒前
乐开欣完成签到 ,获得积分10
17秒前
听音乐的可可完成签到 ,获得积分10
18秒前
19秒前
亮亮完成签到,获得积分10
20秒前
852应助科研通管家采纳,获得10
20秒前
qwwhu应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
Meyako应助科研通管家采纳,获得10
20秒前
柳半山应助科研通管家采纳,获得20
21秒前
科研通AI6应助科研通管家采纳,获得30
21秒前
21秒前
星辰大海应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
sevenhill应助科研通管家采纳,获得10
21秒前
专注白昼应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得30
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
qwwhu应助科研通管家采纳,获得10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456602
求助须知:如何正确求助?哪些是违规求助? 4563319
关于积分的说明 14289340
捐赠科研通 4487938
什么是DOI,文献DOI怎么找? 2458089
邀请新用户注册赠送积分活动 1448425
关于科研通互助平台的介绍 1424086