Unsupervised Anomaly Detection for Surface Defects With Dual-Siamese Network

判别式 人工智能 模式识别(心理学) 计算机科学 异常检测 特征(语言学) 背景(考古学) 特征提取 修补 异常(物理) 特征学习 迭代重建 计算机视觉 图像(数学) 哲学 语言学 物理 凝聚态物理 古生物学 生物
作者
Xian Tao,Dapeng Zhang,Wenzhi Ma,Zhanxin Hou,Zhen-feng Lu,Chandranath Adak
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7707-7717 被引量:4
标识
DOI:10.1109/tii.2022.3142326
摘要

Unsupervised anomaly detection in real industrial scenarios is challenging since the small amount of defect-free images contain limited discriminative information, and anomaly defects are unpredictable. Although nowadays image reconstruction-based methods are widely being used in various anomaly detection applications, they cannot effectively learn semantic representation, which leads to imperfect reconstruction. In this article, anomaly detection is formulated as a joint problem of feature reconstruction and inpainting in the dual-siamese framework. The proposed approach forces the network to model the feature distribution from the normal area and capture the semantic context for discriminating normal and abnormal areas. It first uses a Siamese architecture to capture discriminative features of defect-free samples and its corresponding defective samples generated by the defect random generation module. A dense feature fusion module is then employed to obtain the dense feature representation of dual input. The second Siamese network is proposed to reconstruct and inpaint the dual-dense features of the previous stage. Compared to the existing methods that mostly employ single image reconstruction, it is beneficial to simultaneously reconstruct and inpaint the information of dense discriminative features. The experimental results on the MVTec AD datasets and some major real industrial datasets demonstrate that our method achieves state-of-the-art inspection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助玖熙采纳,获得50
2秒前
背后的涵菱完成签到,获得积分10
2秒前
开心新儿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
HUYUE发布了新的文献求助10
4秒前
烟花应助Abyxwz采纳,获得10
4秒前
彭于晏应助una采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
柏小霜发布了新的文献求助10
5秒前
5秒前
6秒前
12333发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Sky关闭了Sky文献求助
8秒前
科研通AI6应助读书的时候采纳,获得10
8秒前
8秒前
刘腾发布了新的文献求助10
10秒前
Judy发布了新的文献求助10
10秒前
酷波er应助舒心的蜜蜂采纳,获得30
10秒前
binol完成签到,获得积分10
10秒前
11秒前
刘l完成签到,获得积分10
11秒前
11秒前
xiaoshuai发布了新的文献求助10
11秒前
梓mua发布了新的文献求助10
12秒前
boluo发布了新的文献求助10
12秒前
打工dog发布了新的文献求助10
13秒前
科研小白菜完成签到,获得积分10
13秒前
13秒前
15秒前
Lucas应助Judy采纳,获得10
15秒前
15秒前
Abyxwz完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800