亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Anomaly Detection for Surface Defects With Dual-Siamese Network

判别式 人工智能 模式识别(心理学) 计算机科学 异常检测 特征(语言学) 背景(考古学) 特征提取 修补 异常(物理) 特征学习 迭代重建 计算机视觉 图像(数学) 生物 语言学 物理 哲学 古生物学 凝聚态物理
作者
Xian Tao,Dapeng Zhang,Wenzhi Ma,Zhanxin Hou,Zhen-feng Lu,Chandranath Adak
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7707-7717 被引量:4
标识
DOI:10.1109/tii.2022.3142326
摘要

Unsupervised anomaly detection in real industrial scenarios is challenging since the small amount of defect-free images contain limited discriminative information, and anomaly defects are unpredictable. Although nowadays image reconstruction-based methods are widely being used in various anomaly detection applications, they cannot effectively learn semantic representation, which leads to imperfect reconstruction. In this article, anomaly detection is formulated as a joint problem of feature reconstruction and inpainting in the dual-siamese framework. The proposed approach forces the network to model the feature distribution from the normal area and capture the semantic context for discriminating normal and abnormal areas. It first uses a Siamese architecture to capture discriminative features of defect-free samples and its corresponding defective samples generated by the defect random generation module. A dense feature fusion module is then employed to obtain the dense feature representation of dual input. The second Siamese network is proposed to reconstruct and inpaint the dual-dense features of the previous stage. Compared to the existing methods that mostly employ single image reconstruction, it is beneficial to simultaneously reconstruct and inpaint the information of dense discriminative features. The experimental results on the MVTec AD datasets and some major real industrial datasets demonstrate that our method achieves state-of-the-art inspection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助科研通管家采纳,获得30
4秒前
从容芮应助科研通管家采纳,获得30
4秒前
Jasper应助愤怒的梦曼采纳,获得10
15秒前
caca完成签到,获得积分0
52秒前
1分钟前
平常安发布了新的文献求助10
1分钟前
1分钟前
aaa发布了新的文献求助10
1分钟前
aaa完成签到,获得积分20
1分钟前
波恩奥本海默绝热近似完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
楠lalala发布了新的文献求助10
2分钟前
李健应助迷路竹采纳,获得10
2分钟前
坤坤完成签到,获得积分10
2分钟前
2分钟前
xcgh应助ylsk采纳,获得10
2分钟前
脑洞疼应助楠lalala采纳,获得10
2分钟前
冰雪痕发布了新的文献求助10
3分钟前
snowwww发布了新的文献求助20
3分钟前
3分钟前
平常安发布了新的文献求助10
3分钟前
大模型应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
万能图书馆应助冰雪痕采纳,获得10
4分钟前
4分钟前
冰雪痕发布了新的文献求助10
4分钟前
小二郎应助慢走不宋女士采纳,获得10
4分钟前
酷波er应助Elysa采纳,获得10
4分钟前
5分钟前
冷静的梦芝完成签到 ,获得积分10
5分钟前
99668完成签到,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
田様应助秋日思语采纳,获得10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210497
求助须知:如何正确求助?哪些是违规求助? 4387298
关于积分的说明 13662653
捐赠科研通 4247146
什么是DOI,文献DOI怎么找? 2330125
邀请新用户注册赠送积分活动 1327877
关于科研通互助平台的介绍 1280484