Unsupervised Anomaly Detection for Surface Defects With Dual-Siamese Network

判别式 人工智能 模式识别(心理学) 计算机科学 异常检测 特征(语言学) 背景(考古学) 特征提取 修补 异常(物理) 特征学习 迭代重建 计算机视觉 图像(数学) 哲学 语言学 物理 凝聚态物理 古生物学 生物
作者
Xian Tao,Dapeng Zhang,Wenzhi Ma,Zhanxin Hou,Zhen-feng Lu,Chandranath Adak
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7707-7717 被引量:4
标识
DOI:10.1109/tii.2022.3142326
摘要

Unsupervised anomaly detection in real industrial scenarios is challenging since the small amount of defect-free images contain limited discriminative information, and anomaly defects are unpredictable. Although nowadays image reconstruction-based methods are widely being used in various anomaly detection applications, they cannot effectively learn semantic representation, which leads to imperfect reconstruction. In this article, anomaly detection is formulated as a joint problem of feature reconstruction and inpainting in the dual-siamese framework. The proposed approach forces the network to model the feature distribution from the normal area and capture the semantic context for discriminating normal and abnormal areas. It first uses a Siamese architecture to capture discriminative features of defect-free samples and its corresponding defective samples generated by the defect random generation module. A dense feature fusion module is then employed to obtain the dense feature representation of dual input. The second Siamese network is proposed to reconstruct and inpaint the dual-dense features of the previous stage. Compared to the existing methods that mostly employ single image reconstruction, it is beneficial to simultaneously reconstruct and inpaint the information of dense discriminative features. The experimental results on the MVTec AD datasets and some major real industrial datasets demonstrate that our method achieves state-of-the-art inspection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
浮游应助单薄的寻桃采纳,获得10
5秒前
8秒前
Jodie发布了新的文献求助10
10秒前
10秒前
科研通AI6应助nmeiko采纳,获得10
10秒前
11秒前
qxm完成签到 ,获得积分10
13秒前
14秒前
Quanta完成签到,获得积分10
15秒前
渔婆发布了新的文献求助10
16秒前
laruijoint完成签到,获得积分10
16秒前
淘气乌龙茶完成签到 ,获得积分10
17秒前
鹏程完成签到,获得积分10
19秒前
丘比特应助呆妞采纳,获得10
22秒前
23秒前
蔡克东发布了新的文献求助10
23秒前
LL完成签到 ,获得积分10
28秒前
小泡芙完成签到,获得积分10
29秒前
朱梦琳朱梦琳完成签到,获得积分10
30秒前
30秒前
30秒前
古藤完成签到 ,获得积分10
31秒前
35秒前
在水一方应助伯言采纳,获得10
35秒前
吴咪发布了新的文献求助10
35秒前
呆妞发布了新的文献求助10
36秒前
浮游应助Quanta采纳,获得10
37秒前
科目三应助少年游采纳,获得10
41秒前
吴咪完成签到,获得积分10
43秒前
44秒前
45秒前
46秒前
hai发布了新的文献求助10
49秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Akim应助科研通管家采纳,获得10
50秒前
无极微光应助科研通管家采纳,获得20
50秒前
研友_VZG7GZ应助科研通管家采纳,获得10
50秒前
斯文败类应助科研通管家采纳,获得10
50秒前
小马甲应助科研通管家采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555