Recent Advances in Classification of Brain Tumor from MR Images – State of the Art Review from 2017 to 2021

计算机科学 人工智能 领域(数学) 特征提取 领域(数学分析) 脑瘤 特征(语言学) 推论 机器学习 模式识别(心理学) 医学 病理 数学分析 语言学 哲学 数学 纯数学
作者
Ghazanfar Latif,Faisal Yousif Al Anezi,D. N. F. Awang Iskandar,Abul Bashar,Jaafar Alghazo
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:18 (9): 903-918 被引量:7
标识
DOI:10.2174/1573405618666220117151726
摘要

The task of identifying a tumor in the brain is a complex problem that requires sophisticated skills and inference mechanisms to accurately locate the tumor region. The complex nature of the brain tissue makes the problem of locating, segmenting, and ultimately classifying Magnetic Resonance (MR) images a complex problem. The aim of this review paper is to consolidate the details of the most relevant and recent approaches proposed in this domain for the binary and multi-class classification of brain tumors using brain MR images.In this review paper, a detailed summary of the latest techniques used for brain MR image feature extraction and classification is presented. A lot of research papers have been published recently with various techniques proposed for identifying an efficient method for the correct recognition and diagnosis of brain MR images. The review paper allows researchers in the field to familiarize themselves with the latest developments and be able to propose novel techniques that have not yet been explored in this research domain. In addition, the review paper will facilitate researchers who are new to machine learning algorithms for brain tumor recognition to understand the basics of the field and pave the way for them to be able to contribute to this vital field of medical research.In this paper, the review is performed for all recently proposed methods for both feature extraction and classification. It also identifies the combination of feature extraction methods and classification methods that, when combined, would be the most efficient technique for the recognition and diagnosis of brain tumor from MR images. In addition, the paper presents the performance metrics, particularly the recognition accuracy, of selected research published between 2017-2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
南桥完成签到 ,获得积分10
1秒前
允怡发布了新的文献求助10
1秒前
1秒前
上官若男应助Joker采纳,获得10
1秒前
2秒前
3秒前
zz完成签到,获得积分20
4秒前
4秒前
6秒前
6秒前
顾矜应助霸气的不评采纳,获得10
8秒前
8秒前
朱道斌完成签到,获得积分10
8秒前
moon完成签到 ,获得积分10
9秒前
11秒前
dyd发布了新的文献求助10
11秒前
zz发布了新的文献求助10
12秒前
orixero应助李健春采纳,获得10
12秒前
13秒前
南桥完成签到 ,获得积分10
13秒前
允怡完成签到,获得积分20
14秒前
ddd发布了新的文献求助30
14秒前
烟花应助澳大利亚马铃薯采纳,获得10
16秒前
今后应助小中采纳,获得10
16秒前
17秒前
17秒前
高兴孤萍发布了新的文献求助10
17秒前
18秒前
18秒前
暗袍发布了新的文献求助10
18秒前
soild完成签到,获得积分10
18秒前
dyd完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
hmhu发布了新的文献求助30
21秒前
汉堡包应助沉默安波采纳,获得10
21秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291