Prevalence and Determinants of Sarcopenic Obesity in Older Adults: Secondary Data Analysis of the Longitudinal Ageing Study in India (LASI) Wave 1 Survey (2017–18)

医学 肌萎缩 肥胖 超重 体质指数 老年学 肌萎缩性肥胖 纵向研究 人口学 老化 糖尿病 环境卫生 内科学 内分泌学 病理 社会学
作者
Madhur Verma,Nitin Kapoor,Aditi Chaudhary,Priyanka Sharma,Nilabja Ghosh,Shivani Sidana,Rakesh Kakkar,Sanjay Kalra
出处
期刊:Advances in Therapy [Springer Nature]
卷期号:39 (9): 4094-4113 被引量:6
标识
DOI:10.1007/s12325-022-02216-z
摘要

IntroductionSarcopenic obesity (SO) represents the confluence of two epidemics—an aging population and an increasing rate of obesity. The two diseases may act synergistically, and SO may significantly affect morbidity and mortality. However, the burden is not defined to drive the policy changes. Hence the present study was done to estimate the prevalence and predictors of SO in India.MethodsWe did a secondary data analysis of the 72,250 older adults who participated in the first wave of the Longitudinal Aging Study in India (2017–18). Possible sarcopenia was defined as per the guidelines by the Asian Working Group for Sarcopenia (AWGS) criteria. The modified criterion of overweight and obesity for Asian adults was used to categorize obesity. Presence of both sarcopenia and obesity depicted SO. Weighted analysis was done to estimate the prevalence of SO, and multinomial bivariate logistics regression was used to identify the predictors of SO.ResultsThe overall prevalence of obesity, sarcopenia, and SO was 27.1%, 41.9%, and 8.7%, respectively. The mean age, weight, body mass index (BMI), and blood pressure of adults with SO were significantly higher compared to others. Higher age, urban residence, west and south regions of India, consumption of tobacco or alcohol, no physical activity, and presence of diabetes contribute to SO.ConclusionThe burden of SO seems to be less but amounts to a massive number in an aging country. We stress increased screening of the geriatric age group and advocate increased physical activity and dietary modifications to realize the concept of healthy aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycc完成签到,获得积分10
1秒前
1秒前
2秒前
辰小呀发布了新的文献求助10
3秒前
4秒前
脑洞疼应助绿端采纳,获得10
5秒前
夏天来了发布了新的文献求助20
6秒前
6秒前
6秒前
8秒前
俊逸的篮球完成签到,获得积分10
8秒前
9秒前
li发布了新的文献求助10
9秒前
10秒前
丘比特应助xcydd采纳,获得10
10秒前
英俊的铭应助NZH采纳,获得10
11秒前
13秒前
13秒前
123发布了新的文献求助10
13秒前
务实静槐完成签到,获得积分10
13秒前
snow发布了新的文献求助30
13秒前
Owen应助牵动一弹性采纳,获得10
13秒前
YZHSCI888完成签到,获得积分20
14秒前
15秒前
小远儿发布了新的文献求助10
15秒前
16秒前
今后应助梁liang采纳,获得10
16秒前
111发布了新的文献求助100
16秒前
16秒前
奔跑石小猛完成签到,获得积分10
17秒前
852应助123456789hyb采纳,获得10
18秒前
可爱的函函应助YZHSCI888采纳,获得30
18秒前
彭于彦祖应助胡图图采纳,获得30
19秒前
苏卿应助Pengwuguang采纳,获得10
19秒前
21秒前
柔弱雨珍完成签到,获得积分10
21秒前
彦卿发布了新的文献求助10
21秒前
22秒前
瘦瘦沛柔发布了新的文献求助10
24秒前
叉烧发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331