协调
神经影像学
计算机科学
人工智能
深度学习
机器学习
数据挖掘
神经科学
心理学
声学
物理
作者
Dezheng Tian,Zilong Zeng,Xiaoyi Sun,Qiqi Tong,Huanjie Li,Hongjian He,Jia‐Hong Gao,Yong He,Mingrui Xia
出处
期刊:NeuroImage
[Elsevier BV]
日期:2022-05-12
卷期号:257: 119297-119297
被引量:36
标识
DOI:10.1016/j.neuroimage.2022.119297
摘要
The accumulation of multisite large-sample MRI datasets collected during large brain research projects in the last decade has provided critical resources for understanding the neurobiological mechanisms underlying cognitive functions and brain disorders. However, the significant site effects observed in imaging data and their derived structural and functional features have prevented the derivation of consistent findings across multiple studies. The development of harmonization methods that can effectively eliminate complex site effects while maintaining biological characteristics in neuroimaging data has become a vital and urgent requirement for multisite imaging studies. Here, we propose a deep learning-based framework to harmonize imaging data obtained from pairs of sites, in which site factors and brain features can be disentangled and encoded. We trained the proposed framework with a publicly available traveling subject dataset from the Strategic Research Program for Brain Sciences (SRPBS) and harmonized the gray matter volume maps derived from eight source sites to a target site. The proposed framework significantly eliminated intersite differences in gray matter volumes. The embedded encoders successfully captured both the abstract textures of site factors and the concrete brain features. Moreover, the proposed framework exhibited outstanding performance relative to conventional statistical harmonization methods in terms of site effect removal, data distribution homogenization, and intrasubject similarity improvement. Finally, the proposed harmonization network provided fixable expandability, through which new sites could be linked to the target site via indirect schema without retraining the whole model. Together, the proposed method offers a powerful and interpretable deep learning-based harmonization framework for multisite neuroimaging data that can enhance reliability and reproducibility in multisite studies regarding brain development and brain disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI