Obtaining high dielectric constant and breakdown strength in composites with asymmetric MXene filler and highly insulative PVC matrix

材料科学 复合材料 电介质 复合数 高-κ电介质 渗流阈值 填料(材料) 聚合物 介电损耗 电阻率和电导率 光电子学 工程类 电气工程
作者
Yefeng Feng,Li Liu,Hongrong Qiu,Maolin Bo,Wanshan Duan,Qihuang Deng
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:32: 102133-102133 被引量:1
标识
DOI:10.1016/j.surfin.2022.102133
摘要

Utilizing percolation of symmetric MXene filler easily achieves high dielectric constant in polymer/MXene composites. However, percolation leads to low breakdown strength. In present work, we have adopted a new strategy of employing asymmetric bimetallic VTiC MXene filler to fabricate composite dielectrics with highly insulating polyvinyl chloride (PVC) matrix. VTiC filler was prepared via heat-pressing and etching. PVC/VTiC composite films with varied filler contents were prepared via solution cast. Different surface work functions of VTiC were confirmed via density functional theory (DFT) calculations. Compared with several polymer/symmetric monometallic MXene composites in our prior works, PVC/VTiC composites show simultaneously improved dielectric and breakdown properties. In later, high dielectric constant stems from cooperation of filler's asymmetry and polymer/filler interface polarization, and high breakdown strength is rooted in matrix's ultrahigh insulation. Optimized PVC/VTiC composite with 10 wt% filler possesses a high dielectric constant of ∼203, low dielectric loss of ∼0.13 at 100 Hz and high breakdown strength of ∼374 MV m−1 at direct-current field. Innovation of this work is use of asymmetric MXene filler for constructing polymer-based composite dielectrics with promising properties. This work might pave a road for large-scale preparation of advanced dielectrics for capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红完成签到,获得积分10
2秒前
瑶一瑶发布了新的文献求助10
2秒前
NexusExplorer应助刘鹏宇采纳,获得10
2秒前
roselau完成签到,获得积分10
2秒前
yudandan@CJLU完成签到,获得积分10
3秒前
3秒前
半山完成签到,获得积分10
7秒前
吹泡泡的红豆完成签到 ,获得积分10
8秒前
研友_89eBO8完成签到 ,获得积分10
8秒前
隐形曼青应助ZeJ采纳,获得10
8秒前
8秒前
隐形曼青应助温暖的钻石采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
10秒前
123cxj发布了新的文献求助10
11秒前
星辰大海应助红红采纳,获得10
11秒前
sweetbearm应助小周采纳,获得10
12秒前
科研通AI5应助赖道之采纳,获得10
12秒前
13秒前
HonamC完成签到,获得积分10
14秒前
十三十四十五完成签到,获得积分10
15秒前
潇洒的问夏完成签到 ,获得积分10
17秒前
无声瀑布完成签到,获得积分10
17秒前
Bingtao_Lian完成签到 ,获得积分10
18秒前
小布丁完成签到 ,获得积分10
18秒前
竹筏过海应助季生采纳,获得30
19秒前
20秒前
buno应助22采纳,获得10
21秒前
赘婿应助TT采纳,获得10
22秒前
22秒前
22秒前
23秒前
Jenny应助赖道之采纳,获得10
25秒前
依古比古完成签到 ,获得积分10
27秒前
汎影发布了新的文献求助10
27秒前
小二完成签到,获得积分10
27秒前
28秒前
30秒前
顾矜应助长情洙采纳,获得10
30秒前
monere发布了新的文献求助30
30秒前
Xiaoxiao应助汉关采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808