Enhancing the Theranostic Performance of Organic Photosensitizers with Aggregation-Induced Emission

光动力疗法 单线态氧 光敏剂 光化学 化学 活性氧 轨道能级差 纳米技术 氧气 分子 材料科学 有机化学 生物化学
作者
Kenry Kenry,Bin Liu
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (7): 721-734 被引量:17
标识
DOI:10.1021/accountsmr.2c00039
摘要

ConspectusPhotodynamic therapy has been actively explored recently to combat various physiological disorders and diseases, including bacterial infections, inflammation, and cancer. As a noninvasive modality with high spatiotemporal selectivity, photodynamic therapy leverages photosensitizers, light, and reactive oxygen species to induce cytotoxicity and cell death. Specifically, upon light irradiation, photosensitizers harvest the incident light energy to generate highly reactive singlet oxygen species through photochemical reactions to disrupt the integrity of certain cellular components of the target cells. The extent to which the target cells can be damaged depends largely on the characteristics of photosensitizers. As such, the selection and design of photosensitizers are essential to ensuring effective and safe photodynamic therapy. Unfortunately, organic photosensitizers typically used in photodynamic therapy tend to suffer from a considerable reduction in singlet oxygen production when these molecules aggregate, significantly limiting the efficacy of photodynamic therapy. To address this issue, a different class of organic photosensitizers with aggregation-induced emission (AIE) characteristics, which exhibit bright fluorescence and enhanced photosensitizing activity only when they exist in an aggregated state, has been increasingly formulated for disease theranostic applications.In general, AIE photosensitizers can be designed on the basis of several major strategies. For example, AIE photosensitizers with efficient singlet oxygen generation can be formulated by minimizing their singlet–triplet energy gap via tuning the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the molecules. Simultaneously, through donor–acceptor engineering, AIE photosensitizers can be designed to have increased molar absorptivity, red-shifted absorption and emission wavelengths, and improved body clearance. In situ click synthesis can also be adopted to formulate AIE photosensitizers with suppressed dark toxicity. These design approaches can be optimized using artificial intelligence or machine learning, leading to higher throughput discovery of AIE photosensitizers with exceptional performance. Intriguingly, the therapeutic impact of AIE photosensitizers can be further strengthened by modulating their performance-related features, notably targeting specificity, target accumulation and retention, tissue penetration depth, stimulus responsivity, and theranostic modality. By precisely controlling these elements, multifunctional and biocompatible AIE photosensitizers with superior performance can be realized.Herein, we describe our recent efforts in designing and formulating organic AIE photosensitizers with improved theranostic efficacy and safety to treat bacterial infections and cancer. We first introduce different principles that can be adopted to guide the design of AIE photosensitizers. We then present various ways to strengthen the different performance-associated features of AIE photosensitizers. These include enhancement of the targeting specificity, target accumulation, and retention of AIE photosensitizers through metabolic engineering, enhancement of the tissue penetration depth of AIE photosensitizers through chemiexcitation and ionizing irradiation, enhancement of AIE photosensitization by suppressing intrinsic oxidative resistance, enhancement of the responsivity of AIE photosensitizers through stimulus-responsive building blocks, and enhancement of the overall theranostic performance of AIE photosensitizers through combinatorial therapy. Finally, we identify current challenges, potential opportunities, and future research directions for this emerging field. Through this Account, we seek to stimulate further interest and active collaborations in the development, theranostic applications, and clinical translation of organic AIE photosensitizers to treat different diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助小小牛采纳,获得10
1秒前
鱼儿崽崽完成签到 ,获得积分10
1秒前
3秒前
所所应助柒八染采纳,获得10
4秒前
秋夏发布了新的文献求助10
4秒前
刘梦瑶发布了新的文献求助10
4秒前
超帅梦松发布了新的文献求助10
5秒前
甜甜超有钱完成签到,获得积分10
6秒前
Paul111完成签到,获得积分10
6秒前
7秒前
天天快乐应助刘梦瑶采纳,获得10
7秒前
7秒前
lidan_2008发布了新的文献求助10
8秒前
xxl2000完成签到 ,获得积分10
9秒前
糯米种子完成签到,获得积分10
9秒前
落后语山完成签到,获得积分10
10秒前
木子青山完成签到,获得积分10
10秒前
是草莓完成签到,获得积分10
10秒前
善学以致用应助张远幸采纳,获得10
11秒前
江苏吴世勋完成签到,获得积分10
11秒前
12秒前
12秒前
lcm发布了新的文献求助10
13秒前
赘婿应助南球采纳,获得10
13秒前
苏靖完成签到,获得积分10
13秒前
14秒前
夏来应助边小倩采纳,获得10
14秒前
kofd完成签到,获得积分10
14秒前
英姑应助李少祖采纳,获得10
15秒前
超帅小刺猬完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
17秒前
18135175733发布了新的文献求助10
18秒前
18秒前
18秒前
wyh发布了新的文献求助10
20秒前
20秒前
阿迪发布了新的文献求助10
20秒前
高分求助中
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Eric Dunning and the Sociology of Sport 850
The Cambridge Introduction to Intercultural Communication 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2916547
求助须知:如何正确求助?哪些是违规求助? 2557126
关于积分的说明 6916523
捐赠科研通 2217141
什么是DOI,文献DOI怎么找? 1178458
版权声明 588403
科研通“疑难数据库(出版商)”最低求助积分说明 576742