亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advanced pest detection strategy using hybrid optimization tuned deep convolutional neural network

计算机科学 无线传感器网络 蚁群优化算法 人工智能 卷积神经网络 数据挖掘
作者
Prajakta Thakare,Ravi Sankar V.
出处
期刊:Journal of Engineering, Design and Technology [Emerald (MCB UP)]
卷期号:ahead-of-print (ahead-of-print)
标识
DOI:10.1108/jedt-09-2021-0488
摘要

Purpose Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model. Design/methodology/approach The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents. Findings The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods. Originality/value The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大爷醒醒啊完成签到,获得积分10
4秒前
扬大小汤发布了新的文献求助10
6秒前
Lucas应助扬大小汤采纳,获得10
12秒前
扬大小汤完成签到,获得积分10
18秒前
SDNUDRUG完成签到,获得积分10
25秒前
脑洞疼应助科研通管家采纳,获得30
27秒前
33秒前
39秒前
44秒前
小伍完成签到,获得积分10
44秒前
44秒前
小伍发布了新的文献求助30
48秒前
54秒前
qq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
WerWu完成签到,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
汉堡包应助乐生采纳,获得50
2分钟前
乐乐应助泡面小猪采纳,获得10
2分钟前
愤怒的豆腐人完成签到,获得积分10
2分钟前
灵溪完成签到 ,获得积分10
2分钟前
我有乖乖吃饭完成签到,获得积分20
2分钟前
小蘑菇应助我有乖乖吃饭采纳,获得60
3分钟前
3分钟前
kk发布了新的文献求助10
3分钟前
kk完成签到,获得积分10
3分钟前
oleskarabach完成签到,获得积分20
3分钟前
3分钟前
泡面小猪发布了新的文献求助10
3分钟前
4分钟前
芒果完成签到 ,获得积分10
4分钟前
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
4分钟前
呜呜老婆完成签到 ,获得积分10
4分钟前
可靠的寒风完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989