清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Advanced pest detection strategy using hybrid optimization tuned deep convolutional neural network

计算机科学 无线传感器网络 蚁群优化算法 人工智能 卷积神经网络 数据挖掘
作者
Prajakta Thakare,Ravi Sankar V.
出处
期刊:Journal of Engineering, Design and Technology [Emerald Publishing Limited]
卷期号:ahead-of-print (ahead-of-print)
标识
DOI:10.1108/jedt-09-2021-0488
摘要

Purpose Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model. Design/methodology/approach The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents. Findings The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods. Originality/value The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
wbh发布了新的文献求助10
16秒前
科研通AI2S应助Dave采纳,获得10
31秒前
Daisy完成签到 ,获得积分10
34秒前
huihui完成签到 ,获得积分10
41秒前
42秒前
AZN完成签到 ,获得积分10
44秒前
ning_qing完成签到 ,获得积分10
51秒前
54秒前
柴yuki完成签到 ,获得积分10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
路过完成签到 ,获得积分10
1分钟前
Lucas应助wbh采纳,获得10
1分钟前
上官若男应助rpe采纳,获得10
1分钟前
谢薇是猪完成签到,获得积分10
1分钟前
四叶草完成签到 ,获得积分10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到 ,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
wbh完成签到,获得积分10
2分钟前
蛋妮完成签到 ,获得积分10
2分钟前
3分钟前
柏月发布了新的文献求助10
3分钟前
平平平平完成签到 ,获得积分10
3分钟前
QQQQQQQ发布了新的文献求助30
3分钟前
蛋卷完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
情怀应助Destiny采纳,获得10
3分钟前
科研的豪哥完成签到 ,获得积分10
3分钟前
youwenjing11完成签到 ,获得积分10
4分钟前
匆匆完成签到 ,获得积分10
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
加贝完成签到 ,获得积分10
4分钟前
泥泞完成签到 ,获得积分10
4分钟前
kingcoffee完成签到 ,获得积分10
4分钟前
大水完成签到 ,获得积分10
4分钟前
科研通AI2S应助cc采纳,获得10
5分钟前
王洋洋完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990732
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256570
捐赠科研通 3271081
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234