To prepare a carbon nanotube (CNT)/carbon fiber multi-scale reinforcement (MSR), multi-walled carbon nanotubes (MWCNTs) functionalized at the end caps with hexamethylene diamine (HMD) are grafted onto the surfaces of carbon fibers treated with acyl chloride. The surface element concentrations, surface functional groups and morphology of the MSR were examined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS spectra indicate that sp2 and sp3 carbon atoms are major components in the MSR surface, and the carbon fiber surface structure is not destroyed. There is 17.41% of C–NHx in the surface of the MSR, which suggests that MWCNTs are covalently grafted onto carbon fiber surfaces. SEM shows that the grafted MWCNTs stick to the carbon fiber surface at different angles, and are uniformly distributed along the outer edges of the grooves in the fiber surface. The grafted MWCNTs are 50–200 nm in length and around 14 nm in diameter. It was found that the grafting increases the weight of carbon fiber by 1.2%, which implied that a considerable amount of MWCNTs were grafted onto carbon fiber surfaces.