Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds

氮气 环境科学 冬小麦 植被(病理学) 土壤水分
作者
Xia Yao,Haijian Ren,Zhongsheng Cao,Yongchao Tian,Weixing Cao,Yan Zhu,Tao Cheng
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:32: 114-124 被引量:41
标识
DOI:10.1016/j.jag.2014.03.014
摘要

Abstract Hyperspectral sensing techniques can be effective for rapid, non-destructive detecting of the nitrogen (N) status in crop plants; however, their accuracy is often affected by the soil background. Under different fractions of soil background, the canopy spectra and leaf nitrogen content (LNC) in winter wheat (Triticum aestivum L.) were obtained from field experiments with different N rates and planting densities over 3 growing seasons. Five types of vegetation index (VIs: normalized difference vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), optimize soil adjusted vegetation index (OSAVI), and perpendicular vegetation index (PVI)) were constructed based on three types of spectral information: (1) the original and the first derivative (FD) spectrum, (2) the spectrum adjusted with the vegetation coverage (FVcover), and (3) the pure spectrum extracted by a linear mixed model. Comprehensive relationships of above five types of VI with LNC were quantified for LNC detecting under different soil backgrounds. The results indicated that all five types of VI were significantly affected by the soil background, with R2 values of around 0.55 for LNC detecting, with the OSAVI (R514, R469)L=0.04 producing the best performance of all five indices. However, based on the FVcover, the coverage adjusted spectral index (CASI = NDVI(R513, R481)/(1 + FVcover)) produced the higher R2 value of 0.62 and the lower RRMSE of 13%, and was less sensitive to the leaf area index (LAI), leaf dry weight (LDW), FVcover, and leaf nitrogen accumulation (LNA). The results demonstrate that the newly developed CASI could improve the performance of LNC estimation under different soil backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里如雪完成签到,获得积分10
刚刚
lxrsee发布了新的文献求助10
1秒前
1秒前
2秒前
轻念发布了新的文献求助10
2秒前
lft361应助xh采纳,获得10
3秒前
无极微光应助Starry采纳,获得20
4秒前
山河发布了新的文献求助10
4秒前
cher发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
王翼完成签到,获得积分10
5秒前
6秒前
xxd完成签到,获得积分10
6秒前
6秒前
若离发布了新的文献求助10
6秒前
6秒前
彭于晏应助桃子采纳,获得10
7秒前
火羊宝发布了新的文献求助10
7秒前
8秒前
chuanyongcui完成签到,获得积分10
8秒前
李健应助明天采纳,获得10
8秒前
李金玉发布了新的文献求助10
8秒前
8秒前
8秒前
zhangjin2969发布了新的文献求助10
9秒前
黄院士发布了新的文献求助10
9秒前
rua完成签到,获得积分20
10秒前
V——V5555发布了新的文献求助10
10秒前
10秒前
研途顺利完成签到,获得积分20
10秒前
lxrsee完成签到,获得积分20
11秒前
poppy发布了新的文献求助30
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
辰宸完成签到,获得积分10
12秒前
修辞发布了新的文献求助10
12秒前
今天也要好好学习完成签到,获得积分10
13秒前
研途顺利发布了新的文献求助10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442411
求助须知:如何正确求助?哪些是违规求助? 4552693
关于积分的说明 14237826
捐赠科研通 4473934
什么是DOI,文献DOI怎么找? 2451764
邀请新用户注册赠送积分活动 1442609
关于科研通互助平台的介绍 1418551