Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study

全基因组关联研究 医学诊断 医学 计算机科学 联营 数据挖掘 人工智能 生物 基因 遗传学 病理 单核苷酸多态性 基因型
作者
Abel Kho,M. Geoffrey Hayes,Laura J. Rasmussen‐Torvik,Jennifer A. Pacheco,William K. Thompson,Loren L. Armstrong,Joshua C. Denny,Peggy Peissig,Aaron W. Miller,Wei‐Qi Wei,Suzette J. Bielinski,Christopher G. Chute,Cynthia L. Leibson,Gail P. Jarvik,David R. Crosslin,Christopher S. Carlson,Katherine M. Newton,Wendy A. Wolf,Rex L. Chisholm,William L. Lowe
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:19 (2): 212-218 被引量:301
标识
DOI:10.1136/amiajnl-2011-000439
摘要

Genome-wide association studies (GWAS) require high specificity and large numbers of subjects to identify genotype-phenotype correlations accurately. The aim of this study was to identify type 2 diabetes (T2D) cases and controls for a GWAS, using data captured through routine clinical care across five institutions using different electronic medical record (EMR) systems.An algorithm was developed to identify T2D cases and controls based on a combination of diagnoses, medications, and laboratory results. The performance of the algorithm was validated at three of the five participating institutions compared against clinician review. A GWAS was subsequently performed using cases and controls identified by the algorithm, with samples pooled across all five institutions.The algorithm achieved 98% and 100% positive predictive values for the identification of diabetic cases and controls, respectively, as compared against clinician review. By standardizing and applying the algorithm across institutions, 3353 cases and 3352 controls were identified. Subsequent GWAS using data from five institutions replicated the TCF7L2 gene variant (rs7903146) previously associated with T2D.By applying stringent criteria to EMR data collected through routine clinical care, cases and controls for a GWAS were identified that subsequently replicated a known genetic variant. The use of standard terminologies to define data elements enabled pooling of subjects and data across five different institutions to achieve the robust numbers required for GWAS.An algorithm using commonly available data from five different EMR can accurately identify T2D cases and controls for genetic study across multiple institutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OOK发布了新的文献求助10
1秒前
1秒前
机灵柚子举报likk求助涉嫌违规
2秒前
kokoko完成签到,获得积分10
4秒前
5秒前
桐桐应助朴素太阳采纳,获得10
5秒前
10秒前
认真摆烂发布了新的文献求助10
11秒前
远方发布了新的文献求助30
11秒前
小鲨鱼应助晚上研究死采纳,获得10
12秒前
科研通AI5应助Suki采纳,获得10
12秒前
zino发布了新的文献求助10
13秒前
13秒前
斯文败类应助蛋挞采纳,获得30
14秒前
科研通AI5应助独特的归尘采纳,获得10
15秒前
16秒前
18秒前
QQQ发布了新的文献求助30
20秒前
20秒前
展锋发布了新的文献求助10
21秒前
21秒前
21秒前
jay完成签到,获得积分10
23秒前
25秒前
多金发布了新的文献求助30
25秒前
海盐炒榨菜完成签到,获得积分10
26秒前
ZHANG_Kun完成签到 ,获得积分10
26秒前
zxy发布了新的文献求助10
26秒前
cure发布了新的文献求助10
27秒前
祥云发布了新的文献求助10
29秒前
QOP应助顺利的金晶采纳,获得10
29秒前
30秒前
jqy完成签到,获得积分10
30秒前
耿耿星河完成签到,获得积分10
31秒前
cgliuhx完成签到,获得积分10
33秒前
科目三应助zxy采纳,获得10
34秒前
34秒前
34秒前
田様应助厉害了啊里采纳,获得30
35秒前
香香丿发布了新的文献求助10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344