Decoupling noise and features via weighted ℓ 1 -analysis compressed sensing

降噪 算法 计算机科学 拉普拉斯算子 噪音(视频) 残余物 拉普拉斯矩阵 几何处理 计算 梯度噪声 人工智能 数学 模式识别(心理学) 多边形网格 噪声测量 数学分析 噪声地板 计算机图形学(图像) 图像(数学)
作者
Ruimin Wang,Zhouwang Yang,Ligang Liu,Jiansong Deng,Falai Chen
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:33 (2): 1-12 被引量:85
标识
DOI:10.1145/2557449
摘要

Many geometry processing applications are sensitive to noise and sharp features. Although there are a number of works on detecting noise and sharp features in the literature, they are heuristic. On one hand, traditional denoising methods use filtering operators to remove noise, however, they may blur sharp features and shrink the object. On the other hand, noise makes detection of features, which relies on computation of differential properties, unreliable and unstable. Therefore, detecting noise and features on discrete surfaces still remains challenging. In this article, we present an approach for decoupling noise and features on 3D shapes. Our approach consists of two phases. In the first phase, a base mesh is estimated from the input noisy data by a global Laplacian regularization denoising scheme. The estimated base mesh is guaranteed to asymptotically converge to the true underlying surface with probability one as the sample size goes to infinity. In the second phase, an ℓ 1 -analysis compressed sensing optimization is proposed to recover sharp features from the residual between base mesh and input mesh. This is based on our discovery that sharp features can be sparsely represented in some coherent dictionary which is constructed by the pseudo-inverse matrix of the Laplacian of the shape. The features are recovered from the residual in a progressive way. Theoretical analysis and experimental results show that our approach can reliably and robustly remove noise and extract sharp features on 3D shapes.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr-xu0002发布了新的文献求助10
2秒前
JHY完成签到 ,获得积分10
6秒前
科研通AI2S应助www采纳,获得10
9秒前
10秒前
ZYL完成签到,获得积分10
14秒前
lw完成签到,获得积分10
23秒前
慕青应助笇采余采纳,获得10
29秒前
39秒前
喵喵完成签到,获得积分10
43秒前
511完成签到 ,获得积分10
47秒前
科研通AI2S应助juice采纳,获得10
48秒前
51秒前
不安青牛应助机智飞荷采纳,获得10
53秒前
Shan5完成签到,获得积分10
56秒前
桐桐应助送你一朵小红花采纳,获得10
57秒前
cannon8完成签到,获得积分0
58秒前
张飞扬完成签到,获得积分10
58秒前
李浩应助杨抠脚采纳,获得10
59秒前
9464完成签到 ,获得积分10
1分钟前
小小鱼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
李健应助小哈采纳,获得10
1分钟前
yyyyyy完成签到 ,获得积分10
1分钟前
Fan应助科研通管家采纳,获得50
1分钟前
机智飞荷完成签到,获得积分20
1分钟前
1分钟前
大观天下发布了新的文献求助10
1分钟前
1分钟前
凶狠的盛男完成签到 ,获得积分10
1分钟前
小哈发布了新的文献求助10
1分钟前
刘晓敏完成签到 ,获得积分10
1分钟前
火山蜗牛完成签到,获得积分10
1分钟前
喵呜完成签到,获得积分10
1分钟前
无名老大应助felix采纳,获得50
1分钟前
无名老大应助felix采纳,获得50
1分钟前
无名老大应助felix采纳,获得50
1分钟前
无名老大应助felix采纳,获得50
1分钟前
务实大神完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3373496
求助须知:如何正确求助?哪些是违规求助? 2990789
关于积分的说明 8742618
捐赠科研通 2674488
什么是DOI,文献DOI怎么找? 1465245
科研通“疑难数据库(出版商)”最低求助积分说明 677758
邀请新用户注册赠送积分活动 669263