Electroencephalogram subject identification: A review

计算机科学 鉴定(生物学) 脑电图 主题(文档) 会话(web分析) 分类 人工智能 生物识别 支持向量机 机器学习 领域(数学) 模式识别(心理学) 语音识别 心理学 植物 数学 精神科 图书馆学 万维网 纯数学 生物
作者
Marcos DelPozo‐Baños,Jesús B. Alonso,Jaime R. Ticay-Rivas,Carlos M. Travieso
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:41 (15): 6537-6554 被引量:119
标识
DOI:10.1016/j.eswa.2014.05.013
摘要

This is, to the best of the authors knowledge, the first complete research on the state of the art on EEG based subject identification. As well as covering the full story of this field (from 1980 to 2013), an overview of the findings made in genetic and neurophysiology areas, from which it is based, is also provided. After a comprehensive search, 109 biometric publications were found and studied, from which 88 were finally included in this document. A categorization of papers is proposed based on the recording paradigm. The most used databases, some of them public, have been identified and named to allow the comparison of results from these and future works. The findings of this work show that, although basic questions remain to be answered, the EEG, and specially its power spectrum in the range of the alpha rhythm, contains subject specific information that can be used for classification. Moreover, approaches such as a multi-day-session training, the fusion of information from different electrodes and bands, and Support Vector Machines are recommended to maximize the system’s performance. All in all, the problem of subject identification by means of their EEG is harder than initially expected, as it relies on information extracted from complex heterogeneous EEG traits which are the results of elaborated models of inheritance, which in turn makes the problem very sensitive to its variables (time, frequency, space, recording paradigm and algorithms).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助SZncu采纳,获得10
刚刚
2秒前
3秒前
深情安青应助流沙采纳,获得10
3秒前
6秒前
Cherish应助自然白安采纳,获得10
7秒前
7秒前
7秒前
万能图书馆应助搬砖feng采纳,获得10
8秒前
8秒前
10秒前
DR完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
caicai完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
张倩完成签到,获得积分10
19秒前
20秒前
xiangwang发布了新的文献求助30
21秒前
21秒前
PAIDAXXXX完成签到,获得积分10
22秒前
22秒前
科研通AI5应助夕荀采纳,获得10
22秒前
23秒前
天天快乐应助田田采纳,获得10
24秒前
xiaobai2025完成签到 ,获得积分10
24秒前
搬砖feng发布了新的文献求助10
24秒前
嘿嘿发布了新的文献求助30
25秒前
ldp完成签到,获得积分10
26秒前
27秒前
搬砖feng完成签到,获得积分10
30秒前
30秒前
火山发布了新的文献求助10
31秒前
xzn1123应助科研通管家采纳,获得10
31秒前
敏感向雪完成签到 ,获得积分10
31秒前
无花果应助科研通管家采纳,获得10
31秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707855
求助须知:如何正确求助?哪些是违规求助? 3256364
关于积分的说明 9900118
捐赠科研通 2968906
什么是DOI,文献DOI怎么找? 1628219
邀请新用户注册赠送积分活动 772024
科研通“疑难数据库(出版商)”最低求助积分说明 743597