Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation

过电位 氢氧化物 催化作用 材料科学 电化学 化学工程 析氧 氢氧化钴 层状双氢氧化物 无机化学 化学 电极 冶金 有机化学 物理化学 工程类
作者
Ying Li,Lu Zhang,Xu Xiang,Dongpeng Yan,Feng Li
出处
期刊:Journal of materials chemistry. A, Materials for energy and sustainability [The Royal Society of Chemistry]
卷期号:2 (33): 13250-13250 被引量:339
标识
DOI:10.1039/c4ta01275e
摘要

The construction of highly efficient electrocatalysts for water splitting has played an important role in developing sustainable energy sources. Herein, binary zinc–cobalt layered double hydroxide (ZnCo-LDH) films were directly grown on a conductive metal foil by a facile electrodeposition method. The as-deposited ZnCo-LDH films were composed of highly oriented nanowalls with the ab plane vertical to the substrate. The interconnected two-dimensional (2D) LDH nanosheets acted as basic units for the nanowall architectures, which exhibited excellent catalytic activity for electrochemical water oxidation in alkali solution. The onset overpotential of the optimal LDH catalyst for oxygen-evolving reactions is ∼0.33 V in an alkali solution, superior or comparable to those of well-known Co-based electrocatalysts (e.g. Co3O4). The turnover frequencies (TOFs) of ZnCo-LDH catalysts show a linear dependence on the overpotentials, higher than that of monometallic cobalt hydroxide at the overpotential beyond 0.55 V. For instance, at the overpotential of 0.7 V, the TOF value (3.56 s−1) of the optimal LDH is 1.7 times higher than that of monometallic cobalt hydroxide and is 4 times higher than that of LDH powder prepared by a co-precipitation method. The high catalytic activity is attributed to the highly sufficient exposure of accessible active sites on the vertically grown 2D nanosheets. Therefore, this study provides an effective way for preparing high-performance electrocatalysts based on LDH nanosheets, which are beneficial to practical engineering applications owing to their robust binding and integrated construction on metal substrates with any desirable shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助mmol采纳,获得10
1秒前
小田发布了新的文献求助10
1秒前
Maneuvers完成签到,获得积分10
1秒前
笑笑发布了新的文献求助10
3秒前
4秒前
猩猩星发布了新的文献求助10
4秒前
4秒前
欣慰傲薇完成签到,获得积分10
5秒前
5秒前
CodeCraft应助清凉茶采纳,获得10
6秒前
野性的小懒虫完成签到 ,获得积分10
7秒前
sherry完成签到,获得积分10
7秒前
9秒前
10秒前
研友_ng9Yj8发布了新的文献求助10
10秒前
圆圆发布了新的文献求助50
11秒前
Thomas发布了新的文献求助20
11秒前
游戏玩家完成签到,获得积分10
11秒前
可爱的函函应助夏天无采纳,获得10
12秒前
14秒前
花椒发布了新的文献求助10
15秒前
16秒前
17秒前
小田完成签到,获得积分10
17秒前
17秒前
爆米花应助猩猩星采纳,获得10
17秒前
学术小白完成签到 ,获得积分10
17秒前
星辰大海应助研友_ng9Yj8采纳,获得10
18秒前
jkwang发布了新的文献求助10
18秒前
yy发布了新的文献求助10
19秒前
大模型应助今天放假了吗采纳,获得10
19秒前
Amuro完成签到,获得积分10
19秒前
向春山关注了科研通微信公众号
19秒前
20秒前
Yang完成签到,获得积分20
20秒前
20秒前
20秒前
小张完成签到,获得积分10
22秒前
mofan发布了新的文献求助10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133178
求助须知:如何正确求助?哪些是违规求助? 2784386
关于积分的说明 7765974
捐赠科研通 2439577
什么是DOI,文献DOI怎么找? 1296879
科研通“疑难数据库(出版商)”最低求助积分说明 624767
版权声明 600771