Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans

霍恩斯菲尔德秤 再现性 正电子发射断层摄影术 核医学 蒙特卡罗方法 质子疗法 航程(航空) 生物医学工程 质子 放射治疗计划 材料科学 计算机科学 数学 计算机断层摄影术 物理 放射科 统计 医学 核物理学 放射治疗 复合材料
作者
Antje Knopf,Katia Parodi,Thomas Bortfeld,Helen A. Shih,Harald Paganetti
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:54 (14): 4477-4495 被引量:120
标识
DOI:10.1088/0031-9155/54/14/008
摘要

The clinical use of offline positron emission tomography/computed tomography (PET/CT) scans for proton range verification is currently under investigation at the Massachusetts General Hospital (MGH). Validation is achieved by comparing measured activity distributions, acquired in patients after receiving one fraction of proton irradiation, with corresponding Monte Carlo (MC) simulated distributions. Deviations between measured and simulated activity distributions can either reflect errors during the treatment chain from planning to delivery or they can be caused by various inherent challenges of the offline PET/CT verification method. We performed a systematic analysis to assess the impact of the following aspects on the feasibility and accuracy of the offline PET/CT method: (1) biological washout processes, (2) patient motion, (3) Hounsfield unit (HU) based tissue classification for the simulation of the activity distributions and (4) tumor site specific aspects. It was found that the spatial reproducibility of the measured activity distributions is within 1 mm. However, the feasibility of range verification is restricted to a limited amount of positions and tumor sites. Washout effects introduce discrepancies between the measured and simulated ranges of about 4 mm at positions where the proton beam stops in soft tissue. Motion causes spatial deviations of up to 3 cm between measured and simulated activity distributions in abdominopelvic tumor cases. In these later cases, the MC simulated activity distributions were found to be limited to about 35% accuracy in absolute values and about 2 mm in spatial accuracy depending on the correlativity of HU into the physical and biological parameters of the irradiated tissue. Besides, for further specific tumor locations, the beam arrangement, the limited accuracy of rigid co-registration and organ movements can prevent the success of PET/CT range verification. All the addressed factors explain why the proton beam range can only be verified within an accuracy of 1-2 mm in low-perfused bony structures of head and neck patients for which an accurate co-registration of predominant bony anatomy is possible, as shown previously. However, most of the limitations of the current approach are conquerable. By implementing technological and methodological improvements like the use of in-room PET scanners, PET measurements could soon be used to provide proton range verification in clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
垃圾二硫自组装纳米粒完成签到,获得积分10
2秒前
2秒前
代y发布了新的文献求助10
3秒前
wyw完成签到 ,获得积分10
4秒前
粗暴的海豚完成签到,获得积分10
5秒前
小鱼爱吃肉应助锦文采纳,获得10
6秒前
Peter_Zhu发布了新的文献求助30
7秒前
witty完成签到,获得积分10
7秒前
llxhh完成签到,获得积分10
8秒前
9秒前
YL_娟头儿完成签到,获得积分10
10秒前
安生完成签到,获得积分10
11秒前
12秒前
13秒前
慕青应助城北采纳,获得20
14秒前
星辰大海应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
五岳居士应助科研通管家采纳,获得20
15秒前
Hello应助科研通管家采纳,获得150
15秒前
852应助科研通管家采纳,获得200
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
kid1912应助明朗采纳,获得10
17秒前
17秒前
hcjxj完成签到,获得积分10
18秒前
19秒前
20秒前
leiyang49应助DrWho采纳,获得10
22秒前
乌梅丸完成签到,获得积分10
22秒前
栗子完成签到,获得积分10
24秒前
南栀发布了新的文献求助10
24秒前
yuebumanyou发布了新的文献求助10
24秒前
25秒前
科小辉发布了新的文献求助10
26秒前
自然元风完成签到,获得积分10
28秒前
PEKOEA发布了新的文献求助10
28秒前
jiangxinyi完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387255
求助须知:如何正确求助?哪些是违规求助? 3000118
关于积分的说明 8789340
捐赠科研通 2685905
什么是DOI,文献DOI怎么找? 1471378
科研通“疑难数据库(出版商)”最低求助积分说明 680208
邀请新用户注册赠送积分活动 672982