兰萨克
尺度不变特征变换
匹配(统计)
人工智能
计算机视觉
计算机科学
方向(向量空间)
比例(比率)
特征(语言学)
缩放空间
图像(数学)
最大值和最小值
模式识别(心理学)
图像匹配
过程(计算)
特征提取
数学
图像处理
地理
统计
哲学
数学分析
操作系统
地图学
语言学
几何学
作者
Wei Wang,Jun Hong,Yiping Tang
标识
DOI:10.1109/csse.2008.318
摘要
To effectively realize the image feature matching for geomorphic reverse measurement and rebuilding, a new matching scheme is presented, where the SIFT method are adopted to implement initial geomorphic image matching by going through five stages: scale-space construction, scale-space extrema detection, orientation assignment, keypoint descriptor and feature vector matching. Then, in order to eliminate the wrong matching features existing in the initial matching process, RANSAC algorithm is applied. The experimental results show that this algorithm can effectively improve the accuracy and efficiency of geomorphic image matching.
科研通智能强力驱动
Strongly Powered by AbleSci AI