EEG source imaging of brain states using spatiotemporal regression

脑电图 计算机科学 模式识别(心理学) 人工智能 大脑活动与冥想 神经科学 心理学
作者
Anna Custo,Serge Vulliémoz,Frédéric Grouiller,Dimitri Van De Ville,Christoph M. Michel
出处
期刊:NeuroImage [Elsevier BV]
卷期号:96: 106-116 被引量:51
标识
DOI:10.1016/j.neuroimage.2014.04.002
摘要

Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method has the unique advantage of seamlessly integrating a statistical significance of the source estimate while efficiently eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes). After determining the electrophysiological states in terms of stable topographies using established methods (e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial regression of a General Linear Model (GLM). These time courses are then used to find EEG sources that have a similar time-course (using temporal regression of a second GLM). We validate our method using both simulated and experimental data. Simulated data allows us to assess the difference between source maps obtained by the proposed method and those obtained by applying conventional source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit activity in the alpha frequency range. Our results indicate that the proposed EEG source imaging method accurately localizes the sources for each of the electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting states or otherwise weak spontaneous activity states, a problem not adequately solved before.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实向雁应助美满水蜜桃采纳,获得30
2秒前
彭于晏应助小白白采纳,获得30
2秒前
Lucas应助高雅晴采纳,获得10
4秒前
豆子发布了新的文献求助20
4秒前
星辰大海应助三新荞采纳,获得10
4秒前
4秒前
淡酒完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
Dyying完成签到 ,获得积分10
8秒前
大个应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
刘欣完成签到,获得积分10
8秒前
8秒前
Alex应助科研通管家采纳,获得20
8秒前
汤瀚文完成签到 ,获得积分10
9秒前
9秒前
大模型应助abletoo采纳,获得30
9秒前
万能图书馆应助苏诗兰采纳,获得10
10秒前
竹子发布了新的文献求助30
10秒前
Hello应助Thy采纳,获得10
11秒前
星辰大海应助小谢采纳,获得10
12秒前
生动路人应助摔跤的猫采纳,获得10
13秒前
13秒前
天真妙旋完成签到,获得积分20
13秒前
称心的绿竹完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712