疤痕
增生性瘢痕
细胞凋亡
伤口愈合
肌肉肥大
细胞生物学
化学
增生性瘢痕
医学
蛋白激酶B
病理
生物
内分泌学
免疫学
生物化学
作者
Shahram Aarabi,Kirit A. Bhatt,Yubin Shi,Josemaria Paterno,Edward I. Chang,Shang A. Loh,Jeffrey W. Holmes,Michael T. Longaker,Herman Yee,Geoffrey C. Gurtner
标识
DOI:10.1096/fj.07-8218com
摘要
Hypertrophic scars occur following cutaneous wounding and result in severe functional and esthetic defects. The pathophysiology of this process remains unknown. Here, we demonstrate for the first time that mechanical stress applied to a healing wound is sufficient to produce hypertrophic scars in mice. The resulting scars are histopathologically identical to human hypertrophic scars and persist for more than six months following a brief (one-week) period of augmented mechanical stress during the proliferative phase of wound healing. Resulting scars are structurally identical to human hypertrophic scars and showed dramatic increases in volume (20-fold) and cellular density (20-fold). The increased cellularity is accompanied by a four-fold decrease in cellular apoptosis and increased activation of the prosurvival marker Akt. To clarify the importance of apoptosis in hypertrophic scar formation, we examine the effects of mechanical loading on cutaneous wounds of animals with altered pathways of cellular apoptosis. In p53-null mice, with down-regulated cellular apoptosis, we observe significantly greater scar hypertrophy and cellular density. Conversely, scar hypertrophy and cellular density are significantly reduced in proapoptotic BclII-null mice. We conclude that mechanical loading early in the proliferative phase of wound healing produces hypertrophic scars by inhibiting cellular apoptosis through an Akt-dependent mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI