Feature extraction via KPCA for classification of gait patterns

人工智能 步态 模式识别(心理学) 核主成分分析 支持向量机 特征提取 计算机科学 降维 主成分分析 运动学 核方法 物理医学与康复 医学 经典力学 物理
作者
Jianning Wu,Jue Wang,Li Liu
出处
期刊:Human Movement Science [Elsevier]
卷期号:26 (3): 393-411 被引量:103
标识
DOI:10.1016/j.humov.2007.01.015
摘要

Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait’s kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young–elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young–elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的电脑完成签到 ,获得积分10
刚刚
刚刚
Ava应助一站到底采纳,获得10
2秒前
3秒前
DY驳回了七院应助
4秒前
6秒前
科研通AI2S应助transition采纳,获得10
6秒前
xiao发布了新的文献求助10
7秒前
李健的粉丝团团长应助ayj采纳,获得10
7秒前
张堡发布了新的文献求助30
7秒前
9秒前
与月同行完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
John完成签到,获得积分10
12秒前
ChenChen发布了新的文献求助10
14秒前
lydiaabc发布了新的文献求助10
16秒前
xiongdi521发布了新的文献求助10
17秒前
18秒前
李健应助张堡采纳,获得30
18秒前
18秒前
20秒前
Lanyx发布了新的文献求助10
20秒前
transition完成签到,获得积分10
20秒前
gujiguji完成签到,获得积分10
20秒前
在水一方应助pkubest采纳,获得10
20秒前
乐观若烟完成签到 ,获得积分10
20秒前
星辰大海应助duoduo采纳,获得10
21秒前
李健应助dd123采纳,获得10
22秒前
焚风完成签到,获得积分10
23秒前
电力大琦完成签到 ,获得积分10
23秒前
cldg应助xiao采纳,获得10
24秒前
24秒前
背带裤打篮球应助扶桑采纳,获得30
25秒前
25秒前
26秒前
meizi0109完成签到 ,获得积分10
26秒前
在水一方应助ChenChen采纳,获得10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357312
求助须知:如何正确求助?哪些是违规求助? 2980824
关于积分的说明 8696311
捐赠科研通 2662479
什么是DOI,文献DOI怎么找? 1457877
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665938