离散化
环面
范德波尔振荡器
吸引子
数学
数学分析
边值问题
方格
Neumann边界条件
不变(物理)
常微分方程
格子(音乐)
微分方程
物理
非线性系统
数学物理
几何学
量子力学
声学
伊辛模型
作者
A. Yu. Kolesov,E. F. Mishchenko,Н. Х. Розов
标识
DOI:10.1070/im2011v075n03abeh002543
摘要
We consider a two-dimensional lattice of coupled van der Pol oscillators obtained under a standard spatial discretization of the non-linear wave equation , , , on the unit square with the zero Dirichlet or Neumann boundary conditions. We shall prove that the corresponding system of ordinary differential equations has attractors admitting no analogues in the original boundary-value problem. These attractors are stable invariant tori of various dimensions. We also show that the number of these tori grows unboundedly as the number of equations in the lattice is increased.
科研通智能强力驱动
Strongly Powered by AbleSci AI