Reflections on the history of electrochemical impedance spectroscopy

介电谱 恒电位仪 电阻抗 电化学 材料科学 化学 纳米技术 工程物理 化学物理 电极 电气工程 物理 工程类 物理化学
作者
Digby D. Macdonald
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:51 (8-9): 1376-1388 被引量:858
标识
DOI:10.1016/j.electacta.2005.02.107
摘要

The history of electrochemical impedance spectroscopy (EIS) is briefly reviewed, starting with the foundations laid by Heaviside in the late 19th century in the form of Linear Systems Theory (LST). Warburg apparently was the first to extend the concept of impedance to electrochemical systems at the turn of the 19th century, when he derived the impedance function for a diffusional process that still bears his name. Impedance spectroscopy was next employed extensively using reactive bridges to measure the capacitance of ideally polarizable electrodes (mostly mercury), leading to the development of models for the electrified interface. However, it was the invention of the potentiostat in the 1940s and the development of frequency response analyzers in the 1970s that led to the use of EIS in exploring electrochemical and corrosion mechanisms, primarily because of their ability to probe electrochemical systems at very low frequencies. These inventions have led to an explosion in the use of EIS for exploring a wide range of systems and processes, ranging from conduction in the solid and liquid states, ionic and electronic conduction in polymers, heterogeneous reaction mechanisms, and the important phenomenon of passivity. It is evident that the use of EIS in identifying reaction mechanisms makes use of pattern recognition, currently through inspection. It is argued that, in the future development of EIS, reaction mechanism analysis (RMA) would be most efficiently done by using artificial neural networks operating in the pattern recognition mode. This strategy would require the creation of libraries of reaction mechanisms for which the theoretical impedance functions are known.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分20
刚刚
1秒前
1秒前
背后翠梅完成签到,获得积分10
1秒前
1秒前
涛涛发布了新的文献求助10
1秒前
lan完成签到,获得积分10
1秒前
皮皮完成签到 ,获得积分10
2秒前
ChiDaiOLD完成签到,获得积分10
2秒前
2秒前
情怀应助顺顺采纳,获得10
2秒前
Fundamental发布了新的文献求助10
4秒前
咩咩发布了新的文献求助10
4秒前
kingmin应助金鸡奖采纳,获得10
4秒前
喜悦蚂蚁完成签到,获得积分10
5秒前
赘婿应助拼搏向前采纳,获得10
5秒前
5秒前
5秒前
路十三完成签到 ,获得积分10
6秒前
Lucas应助Sophia采纳,获得10
7秒前
lan发布了新的文献求助10
7秒前
金容发布了新的文献求助10
7秒前
京阿尼发布了新的文献求助10
8秒前
好久不见发布了新的文献求助10
8秒前
小二郎应助轩辕德地采纳,获得10
8秒前
超级的飞飞完成签到,获得积分10
11秒前
12秒前
12秒前
金容完成签到,获得积分10
13秒前
细雨听风完成签到,获得积分10
13秒前
含糊的白安完成签到,获得积分10
14秒前
迟大猫应助xzn1123采纳,获得30
15秒前
15秒前
15秒前
科研通AI5应助李李采纳,获得50
16秒前
祖f完成签到,获得积分10
16秒前
阿莫西林胶囊完成签到,获得积分10
17秒前
jason完成签到,获得积分10
17秒前
17秒前
科研通AI5应助吴岳采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808